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ABSTRACT

The ellipsometric measurementof the optical properties of mechani-

cally stressed single crystals of GaAs is the central topic under con-
sideration. GaAsbecomesanisotropic when stressed, therefore, the

crystal optics problem of electromagnetic wave reflection from a bire-

fringent specimen is theoretically investigated using the Maxwell
equations.

The theoretical description of optical compensators is critically

examined. It is found that the geometrical optics description is in-
adequate whenretardation plates and rotary compensators are used for

precise measurementsin well collimated, monochromatic light. A very

general method for using a Senarmontcompensator in ellipsometry is

outlined; the method is applicable, without modification, when the compeo-

sator is inexact, whenmultiple internal reflections are present, and

even whenthe compensator is dichroic. A new type of retardation plate,
which uses an isotropic rather than an anisotropic plate, is proposed.

Detailed consideration is given to the methods for determining the
optical constants of unstressed GaAsand the piezo-optical constants of

stressed GaAsthrough the use of ellipsometry data, including a discussion
of how experimental errors are propagated in the derived inversion re-
lations.

An infrared ellipsometer with a specimenchamber designed so that

stress (or strain) can be applied to a GaAsspecimen and using a GaAs
injection laser source is described.
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INTRODUCTION

The original objective of this work was to study the effects of
gtrain on the performance of GaAs p-n junction lagers. The strain

destroys the cubic symmetry of the GaAs crystal and the band structure

is thus perturbed from the unstressed state. With the application of

strain, one might expect a shift in the emission spectrum due to a

change in the bandgap. The strain could force the transition proba-

bilities to become dependent upon the propagation direction and polari-

zations, which in turn would effect the threshold and power output

cheracteristics of the laser. After this research was begun, two

reports appeared describing the effect of strain on GaAs lasers a'b.

These brief reports of experimental work showed that it was possible to

frequency tune the laser, lower its threshold current, and increase its

output for a given current input through the use of an appropriately

applied strain; no attempt was made to correlate the experimental results

with quantitative theoretical predictions.

The probability per unit time for a transition between a given

state in the valence band and a given state in the conduction band is

the same for both stimulated emission and absorption of a photon,

therefore it is possible to derive criteria for laser action if optical

absorption data is available for material corresponding to the type

to be used in a proposed laser c. In order to make quantitative pre-

dictions concerning the behavior of a GaAs laser under strain, one

possible approach is then to first investigate the optical properties

of laser-like GaAs single crystals under strain, with particular interest

in the strain-induced anisotropy in the absorption characteristics.

This approach was adopted and this work describes the progress that has

been made to date.

a
F. Ryan, R. Miller, Appl. Phys. Lett. _, 162 (1963).

b
D. Meyerhoffer, R. Braunstein, Appl. Phys. Lett. _, 171 (1963).

c
W. P. Dumke, Phys. Rev. 12___Z7,1559 (1962).
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In Chapt. I the interaction of an electromagnetic wave with an ani-

sotropic crystalline plate is discussed. The geometry postulated is

considered to be sufficiently general to describe the transmission and

reflection characteristics of a GaAs specimen for a variety of crystal-

lographic orientations and strain states. It turns out that the solu-

tion to the specific problem considered in Chapt. I represents a new

contribution in itself. The results of Chapt. I are used to refine our

understanding of the selected measurement technique in Chapt. 2. I

might remark here that an ellipsometric measuring method was adopted.

In an ellipsometric measurement two quantities, phase difference and

amplitude ratio, are measured, hence, an ellipsometric measurement, in

principle contains more information than a conventional transmission

type measurement wherein only one quantity, the transmitted intensity,

is measured. In addition, the ellipsometric measurement does not depend"

on the intensity of the light being measured, therefore, no severe re-

strictions are placed on the stability (with respect to intensity) of

the light source. Chapt. 3 discusses how the optical properties of the

GaAs specimen can be calculated after measuring the polarization state

of the incident and reflected light. Chapt. 4 is an description of the

present state of the ellipsometer.

Most of the chapters present mainly the important ideas with numer-

cal examples and detailed derivations generally left to the appendices.

Apps. B,C, and D, appropriate to Chapt. 2, are relatively self-contained

works and can be read without reference to Chapt. 2. The notation in

these appendices differs, in places, from that used in the text. A

bibliography of unreferenced works related to various topics discussed

in this work can be found immediately following the references.
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CHAPTERI

Electromagnetic WaveInteraction with a Birefringent Plate

Problems involving reflection and refraction at planar boundaries

of anisotropic media are, in general, very complicated; in fact, the

expressions describing reflection from and transmission through a bire-

fringent plate have never, to the best of my knowledge, been published

for the completely general case of arbitrary orientation of the prin-

cipal dielectric axes of the plate with an oblique angle of incidence*.

The approach to this problem has been somewhatevolutionary with each

new publication treating a more general situation than those previously.

In this chapter I carry the evolutionary process a bit further by con-

sidering a problem more general than any found in the literature.

I.I DESCRIPTION OF THE PROBLEM

The birefringent plate geometry is shown in Fig. I-I. A right hand

_(_ coordinate system is located such that theX_ plane coincides with

the interface between media I and 2. In each of the three anisotropic

media (The media surrounding the plate are also considered to be bire-

fringent.) one of the principal dielectric axes, #_ , is parallel to

the _ axis, while the orientation of the other two axis, denoted by

the l::_ and_K'_, _ 1,2,3, directions, is arbitrary. Because of the

orthogonality of the principal dielectric axes, all of the o(_

planes are parallel to the gf-_ plane. The angle between the _direction

and the _/_ direction is _ . Each medium is biaxial, with principal

refractive indices , n_ _ _ and _ The birefringent

plate has thickness

* Throughout this work, "anisotropic" and "birefringent" will be used

interchangeably to characterize a medium which is nonmagnetic, nonoptically

active, homogeneous, and lossless, except when specified otherwise, and

Tor which the relative dielectric constant or refractive index is a tensor

quantity.
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Fig. I-I Diagram of a birefringent plate surrounded on both sides by
semi-infinite birefringent media. The plane of incidence is

the plane of the paper. For each medium, one of the princi-
pal dielectric axes is perpendicular to the plane of incidence.

The subscripted _ and _d" symbols denote the directions of

the other two principal axes. Along a principal axis _
the principal refractive index is _ while along _
the principal index is_, _ 1,2,5. Since the _ axes
(not shown) are parallel to the _ axis in each medium, the

refractive index along a _ axis shall be denoted by _

The angle _ is the angle 5etween the _ direction and
the % direction. The various subscripted _ quantities

are angles between unit wave normal vectors and the positive
axis. The birefringent plate (medium 2) has thickness _.

All media are assumed homogeneous, nonoptically active and

nonmagnetic. The plate surfaces are assumed flat and parallel.



An electromagnetic wave of the form*

(I)

is incident from medium I. In (I), _ is the angular frequency,

is time, _ is the vacuum wavelength, _ is a position vector, _ is
A

the refractive index of the incident wave and S_ is the unit wave

normal vector. The unit wave normal 5_ has an _ component $_O,

and a _ component ¢05e_ , where e? , commonly cal led the angle
A

of incidence, is the angle between S_ and the positive _ axis. Note

that the plane of incidence is parallel to the %_ plane. For a given

e_ • two waves can propagate in the AS_ directionl ___ eachvalue of

having a different value of n_.

Because of the manner in which the plane of incidence and the

directions of the principal dielectric aces have been specified, one of

these waves will propagate in an ordinary fashion, that is, its refrac-

tive index is independent of e_ and, in fact, is given by n_ = _I •

The electric field vector of this "ordinary" wave will be perpendicular

to the plane of incidence. The incident ordinary wave will experience

ordinary reflection and refraction at both the _ = O and the _=_

interfaces, that is, all of the waves excited in media 1,2, and 3 by the

incident ordinary wave will have refractive indices which are independent

of their respective directions of propagation. The ordinary waves in the

qth medium will have refractive index _. The net result here is that

the equations describing reflection from and transmission through the

plate will be identical to those derived for isotropic media.

The other type of wave, called the extraordinary fashion, which can

travel in the _+ direction, propagates in an extraordinary fashion, that

is, its refractive index N_ is a function of 8_ and is given by*

_ 1 -I

• A symbol with a bar, such as E_ , denotes a vector quantity while

a broken bar indicates a unit vector, such as _

• * Ref. I reviews many topics in the optics of anisotropic media.

•** The derivation of (2) is considered later.
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The electric vector of the extraordinary wave has only _ and _ compo-
nents, i.e., is contained wholly in the plane of incidence; furthermore,

vector, in general, is not perpendicular to _ . The ex-the electric

traordinary incident wave will experience e×treordinary refraction and

reflection at both the_=O and _=_ interfaces. In this chapter, I
will give the formula for the (complex) amplitude of the wave reflected

in mediumI and of the wave transmitted into medium3, assuming an in-

cident wave of the extraordinary kind.

Nowthat the geometry of Fig. I.I has been described, it is conven-

ient to discuss someof the already published works. The case where

media I and 3 are isotropic and _Z = 0 has been very comprehensively

treated by Schopper 2. The reflection properties of a geometry for which

medium I is isotropic and _Z=_$ = 0 are summarized by Winterbottom 3.

Two workers 4 have investigated a geometry which is, at the same time,

both more and less general than that of Fig. I.I. It is more general

in the sense that the orientation of the principal dielectric axes of

the plate is completely arbitrary and less general in the sense that

media I and 3 are considered isotropic and only normal incidence is

considered.

1.2 SOLUTIONS FOR EXTRAORDINARY WAVES

A

In medium I there is a reflected wave traveling in a direction 5_

with refractive index fl_ , whose electric field can be represented by

A

,
(3)

while in medium 3 there is a transmitted wave traveling in a direction
A

with refractive index Ill3 , whose electric field can be represented

Within the plate (medium 2), multiple internal reflections are set up

which can be characterized by a single "positively" traveling wave with

wave normal SI and refractive index n_ and a single "negatively"
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traveling wave* with wave normal _Z and refractive index I_ . If 9_
^

(and _ ) are defined as angles between S_ (and S_ ) and the posi-

tive _ axis, then both and 5 have _ components _vvL and

componen?m _$ _ , whore ?ha ÷ and - _upor_Gripts _re undQrl_(_(_cl,

The various _+ and 9_-are shown in Fig. I-I. The waves in medium 2

IF

have electric fields which can be written analogously to (I), (3), and (4).

As mentioned earlier, the extraordinary waves under consideration

have only 9(. and _L components of electric field. The reflection and

transmission properties of the plate shall be characterized in terms of

the tangential electric fields. Thus, if E_ ( F-_I ) is the ampli-

tude of the % component of transmitted (reflected) electric field we

have, from App. A,

m

E;.,
(6)

The subscripted _ and _ quantities are tw___omedia tangential reflectances

and transmittances. For example, if media 2 and 3 are identical, then _|

would have the following meaning: If a source wave, traveling in a
A

direction 5_ , is incident (from medium 2) upon the interface _ =O )
A

then the reflected wave in medium 2, traveling in a direction 5_ , has

an _ component of electric field given by E_ = V_|_Z The _

quantities are given by _; = Z_-n_ _O_Oz+/_ ;

with similar relations for _; and _;

_- My classifications,"positively" and "negatively" t_aveling, stem

from the fact that, when _ = 0 (normal i_cidence), _ _ _ = 1,2,3

points in the positive _ direction while 5_ points in the negative
direction.
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A more detailed discussion of the precise relations for the _ and

quantities is contained in App. A. Also contained in App. A are the
relations for the indices of refraction and for the unit wave normals of

all the wavestraveling in each medium. Eqtns. (5) and (6) have been

written so that they resemble, to someextent, the corresponding solu-
5

tions for isotropic media .

1.3 DISCUSSION

While I have not considered incident waves of the ordinary kind, I

might remark that (5) and (6) can be adapted to this case if the various

F , _ , and _ quantities are appropriately defined. If the plate

is absorbing and if the principal axes of the dielectric tensor coincide

with the principal axes of the (effective) conductivity tensor 6, then

the losses can be accounted for by assuming complex principal refractive"

indices, e.g., _-_P_-_ , where K_O If the plate

absorption 4'7 then the principal refractive indicesexhibits negative

would be complex quantities of the form _÷_ where K_>O .

Since the various orientation angles _I_ are arbitrary, as are all

of the principal indices of refraction, the solutions given in this chap-

ter and in App. A can be adapted to a variety of problems involving elec-

tromagnetic wave interactions with anisotropic or isotropic plane-para-

llel layers. The solutions obviously can be used to describe the polar-

ization state of light reflected from thin films or of light transmitted

through crystalline plates. The latter subject, with particular emphasis

on optical compensators, is treated in the next chapter. Some subtler

applications might include the following. An analysis could be made of

the multiple reflection effects in the air or cement filled gap in Glan-

Foucault, Glan-Thompson, and other existing or proposed types of crystal

prism polarizers 8 Recent work on laser modulators 9, laser output coup-

I0 II
lers , adjustable microwave bidirectional couplers , and laser oscilla-

tors and amplifyers 7'12 could be extended to include the case of bire-

fringent media. For those optical devices which are immersed in an
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isotropic medium(air, for example) and which have _152=0, one could
predict the effects of misalignment of the principal axes by considering

small values of _2-
The case of a birefringent plate surrounded by an isotropic medium

is rather interesting. In this instance IE_3/E_I represents the

power transmittance. If we imagine, for the moment, that the plate is

also an isotropic dielectric, then SZ =- and, as shown by Collin 13,

the incident wave will be wholly transmitted when S_ is an integral

multiple of 7T In other words, the power transmittance is a periodic

function of the plate thickness. Getting back to the anisotropic plate,

it is apparent from App. A that _-_2, in general, therefore, the

periodicity of the power transmittance with plate thickness is radically

different from the isotropic case.

In examining the transmission characteristics of birefringent plates,

opticists have long been notorious for their use of the geometrical optics

approximation. In this approximation, the multiple reflections are ig-

nored. In (5), the effect of the internal reflections is eliminated by

setting all of the two media reflectances equal to zero and all of the

two media transmittances equal to unity, yielding

+ ÷

In short, the incident wave is whol y transmitted and the only effect

of the plate is to impart a phase shift or, if the plate is lossy, the

amplitude attenuation is a simple exponential function of plate thickness.

A good example of the geometrical optics approach is contained in the
14

work of Mandarino . The geometrical optics approximation can be justi-

fied if the incident light contains a broad band of wavelengths or if the

plate surfaces are not flat within a fraction of a wavelength and para-

llel. The impact of the laser technology has made these Justifications

questionable, however. Optical maser sources, such as the He-Ne laser,

produce an extremely monochromatic and well collimated beam. A great

number of research laboratories now have facilities for preparing paral-
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lel-plate specimens with surface flatness tolerances of_/lOOand sur-
15face parallelism tolerances of 2 seconds of arc . Even more critical

is the fact that multiple internal reflections play a very important role
in the buildup of electromsgnetlc w_ves in optlc_l maser c_vities, which

are on the order of centimeters in length. Needless to say, a good part

of the work to follow will deal with multiple internal reflections and

some of their implications in optical devices and measuring techniques.



CHAPTER2

Electromagnetic Aspects of Optical Compensators

13

Most optical compensators consist of one or more birefringent plates

surrounded by an isotropic medium, usually air. If the two plate geometry

of App. A is simplified to the extent that media I and 4 are identical

and isotropic and media 2 and 3 have (#:)2=43=0 , (Fig. I-I) we will
still find that it can be adapted to describe the operation of most

optical compensators. The transmitted wave is of interest whendiscussing

compensators. This chapter will contain somepreliminary discussion of

the above mentioned simplified geome#ryas well as a discussion of the

implications of multiple internal reflections in several types of

optical compensators. A good part of the detailed discussion, including

numerical examples, is contained in Apps. B, C, and D.

2.1 SIMPLIFIED GEOMETRY

When media I and 4 are both isotropic and identical, the distinction

between ordinary and extraordinary waves vanishes; the incident, reflected

_pa +_=_mi++_d wav_s all have the same index of refraction regardless

of the polarization of electric fields and, further, the unit wave normal

for the transmitted wave is the same as that for the incident wave. It

is still convenient to decompose the electric field vector of the incident

and transmitted waves into two components, one wholly contained in the

plane of incidence and the other perpendicular to the plane of incidence.

The components in the plane of incidence are called _:) components while

the components perpendicular to the plane of incidence are called $

components. At oblique incidence, the_l_ component is the vector sum of

the 9_ and _ components and at normal incidence the _ component is

simply equal to the_ component. For the incident and transmitted waves

the _ and S components are both perpendicular to the unit wave normal.

Because the transmitted wave travels in the same direction as the incident
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wave, we have that
aM Mr . "/" ;./;,, E_, E sa = E E .

(7)

The _ and $ subscripts will be attached to various quantitues in this

chapter to establish the component of incident (and transmitted) electric

field under consideration.

For the simplified geometry, the results of Chapt. I and App. A

can be reduced to

- _ +o;,-el, : _--o;, : _- o_,: e. - o_ - _..

:- : k* :. J_; - nl, cosi.,

V..

where the _ subscript distinguishes the birefringent plates. Using the

above definitions, (14A) and (31A) can be written as

-I

(8)
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where the subscript_ is equal to either _ or S and

I + r,,,,t_.

1- r,_,_.

+ I

2.2 OPTICAL COMPENSATORS

Optical compensators are used to change the polarization state of

an electromagnetic wave in a controlable fashion. Most often they are

used to convert an elliptically polarized wave into a linearly polarized

wave or vice-versa. Eqtn. (8) will be used, eventually, to describe

how various types of compensators change Tne po_ar_zdi_uN _ioi_ _; _i,_

incident wave.

If the incident wave is elliptically polarized, then its _ and 5

electric field components are out of phase with respect to each other.

We may characterize this elliptic polarization by

(9)

where _ is the phase of the p component minus the phase of the 5

and_S_;is the ratio of the absolute value of thecomponent com-

ponent to the absolute value of the 5 component. In other words, the

right hand side of (9) is the polar representation of the left hand side.

Similarly, the eliptic polarization of the transmitted, or output, wave
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can be characterized by
E÷ +
p_/Es+ = -I:_ o(o e_p_4o .

(I0)

If we define

E;. I E;,
Ep+,/E;,

then, by using (9) and (I0), we find that

t_,_ d,o: -_ _-_,_,. Ao: & + _ .
) (12)

Eqtns. (12) describe how the polarization state of the incident

wave is effected by the transmission characteristics the two plate

geometry. It is important to recognize that _ and _ are functions

of the plate thicknesses, the principal indices of refraction of both

plate s , the refractive index of the surrounding medium, the angle of

incidence, and the vacuum wavelength; Z_ and _ are not functions of _

and _ The subsequent discussion shall be confined mainly to the

problem of converting elliptically polarized light to linearly polarized

light. This is a rather arbitrary restriction but it is not serious and

h=_ _ _mc_d fmr #h_ sake of convenience.

To obtain a linearly polarized output wave we must have e_(_&o_=_l)

that is, the _ and 5 components of the out put electric field must

have a phase difference of zero or an integral multiple of "IT If the

two plate simplified geometry is to function as an optical compensator

then some property or parameter of the geometry must be adjustable in

order to satisfy

(13)

Before explaining how (13) is achieved by various types of compensators

it is useful to consider some analytical expressions for _ .

In the geometrical optics approximation, all of the two media reflec-

tances in (8) are set equal to zero, then (8) is substituted into (II)
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to obta in

(14)

where the subscript _ has been attached to o_ and _ to identify them

as geometrical optics, or approximate, solutions.

By substituting (8) directly into (II), the resulting expressions

for _e and A e are rather complicated. The subscript e is attached

to O( and _ to identify them as exact, or electromagnetic, solutions.

An approximate expression for _eCan be obtained, however; this is

Ao~ = + c0sOs 
(15)

where* (_ = ( Ksla + K$_+ Kr,z _- Kp3,- _/_-'

In obtaining (15), several approximations were used. The first is that

K_z3 - ) " (16)

In most optical compensators employing two plates, it happens that the

+ ..... I=+ ..... #=h_;P=+_ +rhm +h_ qar13_:_ _rv_+alline material with the

principal dielectric axes of one plate oriented differently from those

of the other plate. Since the numerical values of the principal refractive

indices of most crystals never differ by large amounts, we might expect

fthat _ = O ) _v_= _5 , which, in turn, implies (16). The other

approximations used are

The important feature of (15) is that the maximum difference between A¢

and A_ is gi'ven approximately by

* Note that _ is given a different definition from that used in

Chapt. I.
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2.2.1 RETARDATION PLATES

Probably the most common of all the various types of compensators

is the retardation plate 16'17'18 This compensator, in its simplest

form consists of a single crystalline plate which is placed in the path

of the incident wave such that the plate surfaces are perpendicular to

the incident wave normal. In this instance, the _b (_) component of

the transmitted electric field is simply the _(_) component. For re-

tardation plates, _e and _e are fixed quantities, therefore, (13) is

satisfied by rotating the plate about the _ axis. This, in effect, changes

_ By considering medium 2 to be identical to medium 3 with

principal refractive indices n_ and _ , we obtain

n_ n_ n C n_ (17)

Significantly, _ does not depend upon the difference between _ and •

_ , If we consider that _ = I (air environment) and _ and _

50.both on the order of 1.5, then _ =_ 0.08 radian = By choosing

an immersion medium with n_ between n_ and _ , _ can be sub-

stantially reduced.

If the plate is rotated so that the incident wave is compensated

Tnen, oecaube _ ,= ,_, ,,_, i 7 _ .......... _, ....

field vector of the transmitted wave will not point in the direction

predicted by geometrical optics. The implications of this and other

effects owing to multiple internal reflections in single plate retarders

are contained in App. B. A very general technique for using a retardation

plate in conjunction with a rotating analyzer is discussed in App. F.

A variable retardation plate is the Soleil compensator 16 This

device actually can be thought of as two plates with n_ = _3 and

_ :_ One plate consists of two wedges so that its thickness

can be varied in a known fashion. By adjusting the thickness of the

plate, A@ can be varied until (13) is satisfied. For the Soleil com-

pensator, _ is given by (17), if we attach either a 2 or 3 subscript

to _ and _.
d
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2.2.2 ROTARY COMPENSATORS

The phase difference _@ , as was mentioned earlier, is a function

of the angle of incidence. The operation of rotary compensators is based

on this fact. Rotary compensators typically consist of a single bire-

fringent plate or a two plate sandwich. To obtain compensation of the

incident elliptically polarized wave, the plate (or plates) is rotated

a_out an axis parallel to the plate surfaces and perpendicular to the

incident wave normal, thus changing _e ' until (13) is satisfied. The

axis in our geometry (Fig. I.I) would correspond to the axis of rotation.

Multiple reflection effects in the two most common commercially available

rotary compensators are discussed in detail in App. C. The use of an

index matching environment for eliminating multiple internal reflections

is treated in App. D.

A single isotropic slab can also be used as a rotary compensator.

More properly one should probably call it a rotary retardation plate since

it will not compensate all possible ellipticities of the incident wave.

This proposed device, which is treated in App. C, offers interesting pos-

sibilities for examining elliptically polarized waves in the far infrared

and submillimeter wave regions of the electromagnetic spectrum.

The limited ranae of the i_n_rnnlp rn+ ...... +=_N_t!c_ FIsts _ .._i

not compensate circularly polarized light) is not particularly serious in

ellipsometry experiments. While ellipsometric measuring methods are dis-

cussed with greater detail in the following chapter, the general procedure

in these methods is to reflect a linearly polarized wave from a specimen

surface, then, after examining the elliptically polarized reflected wave,

one can use appropriate equations to calculate the optical constants of

the specimen. Equations similar to (12) can be derived relating the

polarization state of the reflected wave to the polarization state of the

the incident wave; when this is done, the ellipticity (minor to major axis
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ratio) of the reflected wave is given by*

ellipticity =_O_I-_ _l_-II_v____II °
I+

The significance of the above equation is that the ellipticity of the

reflected wave can always be brought into the measuring range of the iso-

tropic rotary retardation plate by adjusting the direction of the electric

vector of the wave incident upon the specimen surface. This adjustment

reflects itself in _ . When the electric field vector of the incident

wave is wholly contained in the specimen plane of incidence, _ = qO °

and when it is perpendicular to the plane of incidence, _ =0 °.

* This solution for the ellipticity of the reflected light is discussed

in greater detail by D. A. Holmes and D. L. Feucht, J. Opt. Soc. Am. 5--5,

577 (1965). See also Appendix G.
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As mentioned in the INTRODUCTIONthe ultimate aim of this research

was to measure the optical constants of a stressed specimen of crystal-

line GaAs. The main interest is in howthe optical constants of a stressed

specimen differ from those of an unstressed specimen, therefore, the

actual measurementswere to be taken, first for an unstressed specimen,

and then on the samespecimen in a specific state of stress. In this

chapter I discuss the theory for the measurementtechnique as it has so
far been developed.

3.1 PRELIMINARY CONSIDERATIONS

Consider the three media geometry depicted in Fig. 3.1. Medium I

is considered to have unity index of refraction. Medium 2 is a weakly

absorbing isotropic* material with complex refractive index** n_ _ _-_

and thickness _ . By weakly absorbing we imply that_<<N; in fact,

may be a couple of orders of magnitude less than _ . The third medium,

or the substrate, is isotropic with complex refractive index fl_ _ N-_.

The incident wave normal makes an angle _ with the positive _ axis.

The incident and reflected electric fields are decomposed into _I_

and 5 components. The convention for the _ components is that E_I

and Epa are considered positive when they point away from the inter-

face between media I and 2. We shall define the amplitude reflectances

* Later in this chapter medium 2 will be considered to be anisotropic

with principal dielectric axes coinciding with the X_ axes in Fig. 3-I.

** The definitions for n and _ used in this chapter are not the same

as in Chapt. I and App. A.
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Fig. 3-1 Geometry under consideration. Medium I is assumed to be air.

Medium 2 is the weakly absorbing material under investigation.
Medium 3 is the substrate material. The interfaces between

media are assumed to be flat and parallel.
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Rp and R,5 by

ap-E;,IEp,--E-,,/2_, ,
+

(18a)

(18b)

From Chapt. I and App. A, the expressions for Rp and RS are

R_: (,',,,.,.+,-._,_f>_']l(_+",,.,.,'.,.,_,<_>r), .,,.. _>_,

where*

• _, ..... / , \--a

- _ :_. i_,'_o,_-_...._,- .P

(19)

(20a)

(20b)

(20c).

(20d)

By characterizing the polarization state of the incident and

reflected waves analogously to Chapt. 2, we have

;,/
Using (18) and (21) in

Rp/Rs - _:_ eX?,l'A ,
(22)

* In keeping with the sign convention used to define _p , the signs

of rpi_ and rp_3 have been reversed from the convention used in App. A.
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we obtain

r = ; = + 4;
(23)

In an ellipsometry experiment, the incident light is usually linearly

polarized, therefore, _L can be set to zero in (23). In this instance _

is determined and hence, measurable, by the setting of a polarizer and,

since _r and _m are measurable by a compensator-analyzer combination*,

Z_ and _ can be determined through (23). From (19) it is apparent

that the ratio R_/R s is a function of _ , n , _ , N , K , and_/_.

We shall consider, that _ is known, that L is measurable, and that the

optical constants N and K of the substrate are either known or

independently measurable. The fundamental problem then presents itself:

After determining _ , H , K , _ , _ , _r, and _ , how can one

use (22) to accurately calculate _ , _ , and cL ? This is the problem

to which we address ourselves in the following sections. The determination

of-_ will receive the most attention.

For illustrative purposes, some numerical examples are worked out

in later sections. The optical constants of medium 2 are taken to be

those corresponding to GaAs crystals of the type commonly used for in-

" _:^- _ ...._ _hqnrotion we shalljection lasers, io s_.=;y ................

assume that the GaAs crystal is held at a temperature of 77°K and that

the crystal is illuminated by radiation from a GaAs laser also held at

77°K. By using a double monochromator, Turner and Reese 19 have performed

transmission type absorption measurements at 77°K on samples of GaAs

that were doped to concentrations comparable to those present in the

, _I_ , andS+regions of the GaAs injection laser. The absorption

coefficient at _ = 8400A (approximately the GaAs laser wavelength)

was found to vary from _= 15 cm-I to _:_= 550 cm-I From the relation

_= 41T_/9_ we see that _= 150 cm -I corresponds roughly to _= 0.001.

Marple 20 has determined the real part of the complex refractive index
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of GaAsat lO0°K from prism refraction measurements. At 8400A, Marple

finds n=_.58 and (apparently) believes that this value of N holds

for all laser type GaAs. Hence, in the following sections we shall
consider ellipsometric techniques for measuring n and _ of medium2,

using the values n = 3.58 and 0 _t= _=0.007 for illustrative pur-

poses in the numerical work.

3.2 TWO MEDIA PROBLEM (ISOTROPIC GaAs)

Our interest is mainly in the optical constants of medium 2, namely,

and _ , therefore, the thickness _ is merely another quantity which

must be measured. When _ is a controllable parameter, one is tempted

to suggest that d be made sufficiently large so that medium 2 appears

to be semi-infinite to the incident wave, thus eliminating the necessity

for determining d . An additional advantage which results when Q/ is

very iarge is that (19) and (22) simplify considerably.

The quantity _-I has a negative real part when _0 so that

e×#F =o
d__c_ (24)

Assuming that o / is sufficiently large so that eX_/_ 0 is a valid

approximation, (22) becomes S_tO_vL_--(n_- $_v_.'_#

' _Z - $0_4"_£ (25)

When (25) is inverted, we obtain 21'22

(20)
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In the experimental situation, _i ' _r , AI', and _ are measured*, (23)

is used to compute A and _ , and then (26) is used to compute I_ and

For weak absorption, (25) can be approximated by

- +

Now, if _ is very small compared to FI ,_#IA_eX_j_ will be vir-

tually independent of _ for all angles of incidence except near the

Brewster angle LB, defined by £B - _n_-' (rj) At the Brewster angle

the real part of (27) vanishes and A is very nearly 90 ° while _-_l_t_/#

exhibits a linear dependence with _ . These features are illustrated

in Figs. 3-2 and 3-3. Fig. 3-2 shows that Z_ has a slight linear

dependence upon _ except for angles of incidence near the Brewster ,

angle. For a given value of /_ , Z_ 180° as /_ decreases away

from I:B and _--_0 ° as /_ increases away from L"B . Recall that

when Z_ = 0°, 180°, the reflected wave is linearly polarized. Fig.

3-3 shows that _-_ is almost independent of _ except when fJ is

near /'8 For /_-->_B ' I_ is extremely smal I, implying that it

; ........... +_ _;,,_+ /1/. <n +h_+ _T._ d/. is extremely larQe in

order to obtain a measurable value of _r The most significant point

made by Figs. 3-2 and 3-3 is that measurements of _.d. , I/#r , and A F

should be taken for angles of incidence very close to the Brewster angle

because only then will _ and _/ be sensitive to the precise value of_.

In an experiment, one has to expect a certain amount of measurement

error. An error analysis of the two media geometry is contained in App.

E. The main conclusion drawn from the error analysis is that realistic

measurement errors in I_/i:and VMr cause intolerable errors in the cal-

culation of _ . The factor which completely eliminates the two media

_ The vacuum wavelength _ does not appear in (26), however, it must

be kept in mind that _ and _ are wavelength dependent.
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Fig. 3-2 Plot of theoretical values of /k (degrees, vertical scale),

calculated from (25) for the two media geometry, versus _000_

(horizontal scale) for some selected angles of incidence, with

fl = 3.58. The numbering specifies the angle of incidence

as follows. (I) " = 74.0o; (2) _ = 74.2o; (3) £ = 74.3°;

(4) _ • aa_ (3.58) = 74.39338o; (5) i= 74.40; (6)Z= 74.50;

(7) _ 74.6o; (8) _= 74.8 ° .
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Fig. 3-3 Theoretical values of _-_ (vertical axis) for the two

media geometry, versus _ (horizontal axis) for some selected

angles of incidence, with n= 3.58. The curves are numbered
in accordance with Fig. 3-2.
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approach from serious consideration, however, is that one never works

with a perfectly collimated incident beam. For example, suppose that

the incident beamis slightly divergent and includes angles of incidence
between bB and 74.4 ° in Fig. 3-2. This is a range in L of less than

0.01 °, yet the spread in _ is greater than 12°, indicating that the

reflected beam could not be completely compensated.

3.3 THREE MEDIA PROBLEM (ISOTROPIC GaAs)

The motivation for studying a three media geometry is the possibility

that multiple internal reflections can be induced within the slab in such

a manner that _ and _ become sensitive functions of _ and _ while,

at the same time, measurement errors do not contribute large errors in

the computation of _ and _ . In addition, we require that _ and
..

depend on_ in such a way that realistic beam divergences can be toler-

ated. In order to obtain a reflection from the back surface at _=_ ,

we must adjust the value of _ so that the approximation el_pFt_ O is

no longer valid. Physically, this implies thatc_ must be sufficiently

small so that reflections from the back surface have a chance to emerge

back into medium I and significantly effect the polarization state of the

reflected wave. When _<n (weak absorption), the quantity I' can be

approximated by

(28)

In order to obtain a significant number of multiple internal reflections,

the real part of -_ should not be much larger than unity. In the numer-

ical work in this section we shall use_=5_ , which, for_ = 0.007,

n = 3.58, and _= 0.84J_ , makes the real part of--_ approximately 2.5.

In the experimental situation, one is forced to choose a substrate

material (medium 3). The substrate material could be air. In this

situation, n_ =N-_K need not be measured since it can be assumed that

N = I and K= O. A possible drawback to using an air substrate,

however, is that a certain amount of the energy in the incident wave leaks

into medium 3 and is therefore lost. If one is interested in preserving
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as muchof the incident wave signal strength as possible, then a very

high reflectivity substrate can be used. In this section we assumethat
the latter alternative is desirable and will consider a silver substrate

with optical constants 23 N_ 0.2 and _= 30.0.

Another consideration is what angle of incidence to use. Because /_

and _ both depend upon a number of parameters in addition to & , it

is not particularly simple to discern how _ and _ will _ change when

is varied. Some features of the three media geometry can best be _llus-

trated through numerical examples. In Figs. 3-4 and 3-5, _ and "_

are plotted versus £ for some selected values of _ . The main point

established by the figures is that A and 14_ can both be sensitive to

variations in_l_ over a broad range of _ This is in marked contrast

to the two media case where we found _ and _ sensitive to the precise

value of _ only in a very small interval about the Brewster angle.

Unfortunately, the figures also show that_/_and_/_ can be large

enough to force stringent requirements on the collimation of the incident

beam. Unlike the two media case, however, we are not forced to use an

angle of incidence for which beam collimation requirements are unreal-

istic.

In the thr_ m_dla _a_A fh_ rhn;r_ n÷ _" Cnnl_riTa_ caf+]nnl ]_

not of great importance because a measurable value of _r can nearly

always be obtained regardless of the value of _i - It is convenient

to choose _=TT/arso that a measurement of /_/r is a direct measurement

of _ , to within experimental error (See eqtn. (23)).

Let us now proceed to demonstrate how one can obtain estimates of

n , _,, and_/_ (or _ if _ is known) through measurements of _ ,

/_ , _ , N , and _ . By using eqtn. (19), eqtn. (22) can be written

as a quadratic equation in eX_(-_) , whose solution we can represent by

(29)
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versus angle of incidence I_ in degrees (abscissa) for the three media

geometry, with FI = 3.58, d/9_ = 50/0.84, N = 0.2 and _ = 30.0.
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Eqtn. (29) contains the three unknowns lq , _ , and _ . We can elim-

inate _ if we consider that measurements have been taken at two angles

incidence, I_I , and I_? . The result isof

(30)

Eqtn. (30) is a complex transcendental equation in the complex unknown

I_- It1-_ Reportedly, one can solve this type of equation by an

iterative technique on a digital computer 24, however, I have elected to

deve lop an approximate technique.

From our experience with the two media problem, we might suspect that

the presence of _ in IC_l?_ , r_z3 , _I_-._)s , would have little

effect on _ and _ in the three media problem. When /X and _ are

calculated by neglecting _ everywhere except in _ , the corresponding

approximate values differ only slightly from the exact values; the differ _"

ences would not be discernable on a plot to the scale of Figs. 3-4 and

3-5. With this approximation, F in (29) is no longer dependent on _ .

A second approximation for small_ , is the expansion (28). Eqtn. (29)

may now be written

,.-:- " _"Ylz. : ,t.,_, F(n,L)&,V,N)K) )
..... (31a)

4_(al,x)(n%_,,._'_.): "a,,m._ + -to,,,,T.'C-.&./_.),
(31b)

wherez_ is an(unknown) integer.

L •of incidence I , and 2, where t_i< _2 , we can obtain

• 17.

_-a : t_,,-'(_,l_,) - -L-_,-'(4,1i),)
Cn_'-s,:.,,,?'L,)v:"- (n'- s_." i.O''_ '

By taking measurements at two angles

!

(32a )

(32b)

s,,,..IFi/4.-,r(d/'>,'),
(32c)
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where the subscripts I and 2 refer to measurementstaken at El , and _2

respectively. Eqtn. (32a) is a real transcendental equation which yields

the value of _ After finding _ , eqtn. (32b) gives the value of d/_°
Finally, (32c) yields _ after _ andd/_have been computed. In the

derivation of (32b), a certain amountof care in the section of bl and

_ is assumed. We assume that Ll and L2 are sufficiently close to-

gether so that the integer_ in (31b) is the same for both angles of

The angle _0_._/_) must be assigned to the correctinci dence.

quadrant; if, when this is done, it is found that _-OVl_-I (_i/_i)

< (_z/_), eqtn. (32b)may still be used by adding 27_ to

the numerator.

A sample calculation, including an error analysis, is presented in

App. E. As would be suspected, the sample calculation indicates that the

calculated values of _ , _ , and _/_do not converge precisely to the

true values for "perfect" measurements of _ , _ , _ , _ and /_ .

This is because of the approximations used to derive the solutions (32).

There are two very encouraging features of the sample calculation. The

first is that gross errors (20-30%) in determining the substrate optical

constants resulted in negligible errors in the calculated values of _ and

T_: _?_9_ ;_ +K:+ nn m_llr_mn# _rror. considered alone, was

drastically amplified in the inversion equations (32). The measurement

errors typicallycontributed less than 10% error in the calculated values

of n ,k , and d

The discussion, to this point, has dealt with an ideal geometry and

ideal plane waves. In the preparation of plane parallel specimens, one

should obviously attempt to simulate the ideal geometry as nearly as

possible. A complicating factor which has not been considered here is

the possibility that a surface film might exist on the specimen. This

would enter analytically as a thin parallel plate specimen between media

I and 2. The effect of a thin surface film on the ellipsometric deter-

mination of optical constants by the two media approach has been recently

examined 25.
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3.4 THREE MEDIA PROBLEM (ANISOTROPIC GaAs)

Many substances which are normally isotropic, such as GaAs, become

anisotropic when stressed. We shall assume that a GaAs slab has been

stressed in such a manner that the resultant principal dielectric axes,

created by the stress, coincide with the_ axes in Fig. 3-I. The

GaAs (medium 2) then has three principal refractive indices _xx , _

and _, which can be expressed by

(33)

In (33), the quantities n_ , _x , etc., depend on crystallographic

orientation and the state of stress, and reduce to zero when the stress

is removed. Note that _x , _x, etc., need not necessarily be positive

quant;ties.

The reflected wave is now described by

(34)

where

(35a)

(35b)

(35c)

(35d)

(36a)

(36b)



36

The el lipsometric problem is nowone of determining the unknowns I#I_ ,

_ , fl_ , _, IFI_, and through measurementsof L , /k , and I_I ,

assuming that _I , _ , N , _ , andcl/_ are known. This is a rather

formidable problem but its solution is facilitated by the fact that the

unknowns are adjustable. Consider, for example, that the slab initially

is unstressed. Now suppose that a sufficiently small stress is applied

so that FI_, I_ , _ all are several orders of magnitude smaller than rl ,

andJ_x , _, Jl_ are all several orders of magnitude smaller than _ .

In this instance, (35) can be considered, for all practical purposes, to

be identical to (20); i.e., the stress induced anisotropy does not measur-

ably affect the two media reflectances. The situation with the e;_pl1_

andeX_[IS factors in (34) can be quite different, however. Expanding

I_$ , for example, we have

Because _/_ is large (approximately 50/0.84 in this discussion), the

second term in (37) can have an imaginary part which would be meaningful

to the trigonometric functions in e#(_ . For example, if IFl_ 0.001,

•- al , -re�s-we have _.1, _'_ = ,

In the fol lowina discussion we shall considp.r fh_. _imnl_# _nmmihl_

anisotropy, namely, that of a uniaxial birefringence for which

(38)

For this type of anisotropy, the plate appears to be isotropic for both

and S components of incident electric field. Both l_l_ and Fl$ can

now be written in the form

(39a )

The subscript _ identifies a quantity with the unstressed state.
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Since the unknowns I_$ , _:_, IFl_ , and _ are adjustable, we shall

assume that they have been adjusted to allow the approximation

Using the above approximations, a first order solution is

(39b)

Again, measurements must be taken at two angles of incidence in order to

obtain two equations of the form (40) which can then be simultaneously

solved for the two (complex) unknowns, _p-_p and _$ - _$

Let us suppose that the applied stress is uniaxial. This is pos-

sibly the easiest type to apply with an external mechanism. We would

suspect, as in stress-strain relations, that _and _ _ _nnn.=_S#

would be directly proportional to the magnitude of the stress up to a

• - , , i

certain proportionality llmiT, iT W_ u_,,_v_ ....' _"'-.......r"-_- _:_=i;+,,

exists* then a convenient check on the validity of the approximations

used to obtain (40) is that the calculated values of _F , _I_ , _5 and

_S must all vary linearly with stress.

It is now worthwhile to summarize the conditions and approximations

which led to (40). First, the crystal orientation and applied stress must

be such that the stressed crystal becomes uniaxially anisotropic with the

optic axis pointing in the _ direction of the %_ reference frame.

26
* The whole science of photoelastic stress analysis

this belief.

is based upon
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Second, we assumethat a measurable change in the polarization state of

the reflected waveoccurs at such a stress level that the accompanying

anisotropy does not alter the two media reflectances from their unstressed

values. Third, we assumethat the stress-induced anisotropy allows the
use of the approximations (39a) and (39b). Fourth, all boundaries remain

perfectly flat and parallel with the application of stress. Note here

that the change of plate thickness with stress has been ignored. This is

probably not justifiable, however, the change in thickness can be accounted

for by using stress-strain relations, if the elastic constants of the

specimen are known. Fifth, no surface films are present. In closing this

paragraph, I draw attention to the fact that no numerical work has been
presented. The error analysis for the isotropic case (App. E)should be

extended to the anisotropic case.

3.5 STRESS DIRECTION AND CRYSTALLOGRAPHIC ORIENTATION

In this section I discuss the manner in which the GaAs crystal can be

electric field F_

E, ]

E z : I_I_

•

w

is related to the electric flux density _) by

_I)l " ! ])i

(42)

oriented and stressed in order to achieve the uniaxial anisotropy considered

in Sect. 3.4. It is necessary to first consider the piezobirefringent

properties of GaAs. The term "piezobirefringence" was coined by Poindexter 27

as a suggested name for bJretrlngence prouu_u by =i._=. _ ,.._c;_t_ 27 _

other workers 28'29 have written articles which review recent research in

piezobirefringence. Born and Wolf 30 give a brief introduction to the sub-

ject.

Suppose we establish a reference frame within the GaAs crystal such

that the orthogonal axes of the reference frame coincide respectively with

31
the three axes of the cubic unit cell. In this reference frame, the
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where £_ is commonlycalled the index tensor 29. Whenthe crystal is

unstressed, all of the off-diagonal elements of t&] are equal to zero
and the diagonal elements are all equal to _o = L/rl o , where _Io I_-_I_

is the refractive index of the unstressed crystal. If a unidirectional

stress V is applied in an arbitrary direction having direction cosines

_V ,At_IV , FIv with respect to the reference axes, then the elements

29
of the index tensor are given by

_ss- a.,

12,_z

#l.z_

#L_3

_I_II

0

0

0

(_ I_. °if i_- 0 0 0

_,, _,_ o o o

o o o
0 0 _, 0 0

0 0 0 (_44- 0

o o o o _,_

"-Qv_vV"_

,_v_vV

nvnvV

._v_V

_V nvV

,_v_vV

(43)

The _,1 , _,_- , and %4_ are called piuz_o-optic _.._+_+_......... WhP.n these

L_;-.--_.ZT.tS 2T9 u ..... nnp can then predict how the optical constants will be

influenced by an externally applied stress. In Sect. 3.4, I was primarily

interested in discussing the el lipsometric measuring technique and therefore

did not bring up the subject of piezobirefringence. It is now apparent

that the fundamental parameters are the piezo-optic constants, therefore,

when the stress direction and crystal orientation are specified so that

the uniaxial anisotropy of Sect. 3.4 is created, the el lipsometric measure-

merits and subsequent calculation of IFIp , _i_ , I_$ , and _$ should lead

to a determination_ --°f _iI , _I_ , and II__-

When E and lj) are referred to the principal dielectric axes, which

ii1
E} o o

we shall denote by%_, then

0

!ll!il• (44)
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In other words, under a suitable coordinate transformation, namely the

transformation from the original crystallographic axes to the principal

dielectric axes, the index tensor can be diagonalized.

Now suppose that a wave traveling within the crystal has only an

component of electric field. This could be the case if the unit wave

The direction

; I)i- _l)_ ,

normal vector pointed in either the _ or _ direction.

cosines _ , _ , and YI can be defined such that

F_l= _ E x = (l_x_I)_

Ez:_E _ = _L_,_,_a'b:,

E_: _E. : Ctxx m ])_

(45)

Substitution of (45) into (42) yields

•(_,,- _x_)JL + _,t_ + _ts _ = o,

cu,__ * (,_uz:_-_ _:,_,,_ + a.zsn --o,
(46)

_y ,_iJ_u-,, _ _L_ _ -,,l_e_in÷_ in (45) with q (or _. ) subscripts,

eqtn. (46) would appear with a,:: (or (_). Therefore, we may write

(@.,,-a.)_ + cul2.,,_,,.+ aui_n -o>

a.,:_ + (_.,- a.),,_. -,-a._._n : o ,
(47)

0-_s-_+ %s _ + (a._- _u)n - o ,

-F_'_ ÷ :I .

Eqtns. (47) are used to diagonalize the index tensor. When (43) is sub-

stituted into (47), the diagonal elements of the diagonalized index tensor

and the directions of the principal axes can be determined. The determinant

of the first three equations in (47) must be equal to zero. When this
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determinant is equated to zero, a cubic equation for O_ results, the solu-

tions of which are a_x, _ , and _. By substituting axx back into (47)

the direction cosines of the _ direction can be found. By substituting

the solution for_ (or_}$) back into (47) the direction cosines of the

(or _ ) directions are determined. We shall now consider an example.

Suppose that the unidirectional stress is applied in one of the <III>

crystallographic directions such that -L_v= A_I v = _V = ! /_/_ . When

(43) is substituted into (47), the cubic equation for a, can be factored

into

(48)

By inspecting (48), it is apparent that there are only two distinct

solutions for _ Two elements of the diagonalized index tensor are

equal, therefore, the unidirectional stress has created a uniaxial aniso-

tropy. We shall choose the roots as follows

a...,<.,<- a_+ -- a,++ ( +,,- _+.+.+ _.+,+")Cv/+_),
a.. = a. + {+, +2,++++z+,)Cv/s),.

dip -,, .

(49b)

The optic axis of the uniaxially anisotropic crystal is thus taken as

the _ axis. By substituting (49b) into (47) we find that the _ axis,

or optic axis, is parallel to the direction of the unidirectional stress.

The_ and _ axes can be chosen in any manner so long as they are per-

pendicular to each other and to the _ axis.

For another example, suppose that the stress is applied in one of

the(lO0> directions such that _V _nv =0 and _n_,V= |. In this

instance (43) can be substituted directly into (42) to yield

[=l = o _o+_,,v o •
0 0 _o + _ _=V (50)
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The index tensor in (50) is already diagonalized to the form in (44).

If we choose

_Zx,= _Z_1_ = _0+ _-,2.V' (51a)

(51b)

then the optic axis and the stress direction are both parallel to the

axis.

If we now define the%_} principal axes as those axes corresponding

to the geometry of F!g. 3-I, we see that both of the examples considered

above will suffice to establish the necessary uniaxial geometry analyzed

in Sect. 3.4. The last task is show how _,, , _,, and _4, can be

calculated.

The principal elements of the index tensor are given by

...... _L-_1 _^ +6_ nrlnrin_l r_.fractive indices.

the definition /_o= _-_ , we have

-- s,A,)/(O-x,=-(L. = _Zl]- O-o = -Z (np- n- ,

(52)

From (38) and

(53a)

(53b)

When a(lOO>direction is parallel to the _ axis in Fig. 3-I we have,

using (53) and (51),

.v .

(54a)

(54b)
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When a (_111) direction is parallel to the _ axis in Fig. 3-1 we have,

using (53) and (52),

(55a)

(55b)

There are two rather subtle points regarding (54) and (55). First,

it has been assumed that the absorption mechanisms are governed by

crystal symmetry in such a manner that the effective conductivity tensor 6'32

and the dielectric tensor can both be diagonalized with respect to the

same set of principal axes. Second, the piezo-optic constants are complex

numbers because the crystal is absorbing. Interestingly, all the published

works on piezobirefringence deal almost exclusively with non-absorbing

crystals.

3.6 MEASUREMENT PROCEDURE

It is worthwhile to consider the experimental steps which lead to a

determination of the piezo-optic constants. Ine haas spemin_li ;= 7;, =;

mounted, in a sample holder with a <I00> direction perpendicular to the

plane of incidence. The polarization state of the reflected light is

measured for the unstressed crystal at a single angle of incidence. With-

out changing the angle of incidence, a unidirectional stress is applied

perpendicular to the plane of incidence until a measurable change in the

polarization state of the reflected light is detected and measured. The

polarization state of the reflected light is then measured at successively

greater stress levels. The process; is repeated for at least one more

angle of incidence. The zero stress measurements are used to calculate

n ,_ll{, and _ as described in Sect. 3.3. The measurements taken at

each stress level are used to calculate _f-_l_ and _S-3_$ as

described in Sect. 3.4. At each stress level _, and 6_12 are calculated
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from (54) in Sect. 3.5. The values calculated for _, and _IZ should be

independent of the particular value of stress below the proportional

limit. The measurements described above should then be repeated, in

every detail, on the same or a similar specimen with a <III_ direction

perpendicular to the plane of incidence. These measurements are used

to calculate Itl , _ , o_ , I13_- _ , and _-_s • The

calculated values for _p-_and I135-_s and the earlier computed

values for _i| and_i= are then used in (55) to compute _r4_" Again,

the computed values for_41_ should be independent of the stress level

below the proportional limit; furthermore, (55a) and (55b) should yield

identical values for_4 _ . As a reproducibility check, many pairs of

incidence angles and many stress levels can be used.

The measurement of the quantities _ and _ , which define the

polarization state of the reflected wave (See eqtn. (21).), can be

accomplished by using an optical compensator and an analyzer. While

the techniques for this measurement are fairly well known, I have some

new thoughts to present on the subject of measuring the polarization

state of an electromagnetic wave. _nese _r_ p,use,,ted _n _. .
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Status of the El Iipsometer
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While the previous work (Chapts. I, 2 and 3) was in progress, efforts

were directed toward the development of an ellipsometer. The reason for

building an ellipsometer was to create an instrument for investigating

the optical properties of stressed laser-like crystals of GaAs for wave-

lengths in the vicinity of the absorption edge. In the design and con-

struction of the ellipsometer the following general guide-lines were

adopted. A pulsed GaAs injection laser held at 77°K was to be used as

the light source. The GaAs specimen was to be held at 77°K, or there-

abouts, to insure that the source wavelength would be near the specimen's

absorption edge. Because the theory for the measuring technique (Chapt. 3)

was no_ completely worked out, it was decided to build an ellipsometer

with capabilities for making optical measurements with as much precision

as possible.

The mechanical construction of the el lipsometer is virtually complete,

however, some cal ibrating needs to be done before measurements for stressed

specimen_ can be t_ken. The ÷ollnwin9 sections contain a description of

the present state of the ellipsometer. The mechanical design of the

ellipsometer is somewhat sophisticated, hence, the following discussion,

in places, only highlights some of the basic features. Creative suggestions

from Prof. D. Feucht, Mr. E. Litot, and Prof. R. Longini have been

invaluable. Most of the detailed mechanical design was done by Mr. Litot.

The ellipsometer was built in the Electrical Engineering Machine Shop.

4.1 GENERAL DESCRIPTION

A block diagram (top view) of the ellipsometer is shown in Fig. 4-I.

The radiation from a GaAs diode laser source S is converted into a parallel

beam by a collimator C. The beam is passed through a polarizer P in order

to obtain a linearly polarized beam. The linearly polarized beam is directed

r_
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"STRAIGHT-THROUGH" POSITION

r--n r--n r--1

_J

MEASUREMENT

POSITION

Fig. 4-I Block diagram of the ellipsometer.

Fig. 4-2 Photograph of the ellipsometer.
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upon a GaAssample in the specimen chamberSC. After reflection from the

sample, the polarization state of the reflected beamis measuredwith an

optical compensator OCand an analyzer A. The light emerging from the
analyzer is then passed into the detector D.

A photograph of the ellipsometer is shown in Fig. 4-2. The entire

ellipsometer assembly is mountedon a 3/4 inch thick aluminum base plate.

The surface of the base plate is quite planar; the deviation from perfect

flatness is approximately 0.004 inch, or less, over the entire working

surface. The base plate rests on the polished surface of a 2-¼ inch

thick granite slab which in turn is epoxyed to the top of a sturdy bench.

The vertically oriented (brass) cylinder at the left houses a dewar

assembly containing the diode laser source. The brass cylinder is mounted

on gimbals which permit the cylinder to be tilted from the vertical .

direction up to a maximumof about 5 deg. The gimbaling arrangement is

mountedon a rotary table which allows rotation about a vertical axis

and two orthogonal horizontal translations. The rotary table is attached

go the base plate. To the right of the source geometry is an elevated

platform upon which are mounted the coiiimai_r a,,u4_^,,,_po'_zer_ The

collimator is held by tvso supports and can be "aimed" by adjusting six

set screws. The polarizer is mounted in a divided circle which can be

"flipped" about a horizontal axis. The sample chamber, compensator,

analyzer, and detector are all mounted on another elevated platform which

can be termed the detector arm. One end of the arm is fixed to a central

pivot while the other end is supported by a "V" leg. The bottom of the

"V" leg has a ball-bearing wheel which can roll on the base plate. The

essential ingredient of the central pivot is a circular horizontal plate,

capable of rotation about a vertical axis, mounted in a supporting

structure which is securely fastened to the base plate. The detector

arm is bolted to the top of the circular plate. The circular plate is

actually a divided circle with the smallest scale divisions being 5 min.

of arc. The specimen chamber is mounted on the detector arm so that the

_i_ r ii_iili'_"i i̧
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central pivot axis of rotationpasses roughly through the specimen itself;

thus when the arm is moved, the specimen experiences a rotation with

little horizontal translation. The specimen chamber can be given positional

adjustments with a gimbal-rotary table combination. The cylinder jutting

up from atop the specimen chamber is a stainless steel double-wall dewar

which can be filled with coolant; the specimen itself is cooled through

a thermal conduction path to a copper heat sink at the bottom of the

dewar. The specimen chamber and the volume between the inner and outer

walls of the dewar can be evacuated. Vacuum tight optical windows permit

the entry and exit of the light beam. To the right of the specimen

chamber are two divided circles mounted on the detector arm. The optical

compensator is mounted on the circle closest to the specimen chamber while

the analyzer is mounted on the other circle. The analyzer divided circle

can be "flipped" about a horizontal axis. The last component on the '"

detector arm is a multiplier phototube detector. The white box is a

polystyrofoam jacket which can be filled with dry ice to cool the photo-

tube.

Brief descriptions of the elripsometer components are contained in

the following sections.

4.2 SOURCE

A diagram of the source dewar assembly is shown in Fig. 4-3. All

of the items shown in the diagram are fixed with respect to each other;

their collective motion is achieved by the gimbal-rotary table combin-

ation used to adjust the position of the cylindrical brass housing shown

in Fig. 4-2. A diode laser in series with a 3 ohm resistor terminates

a 3 ohm transmission line. A current pulse travels down the line and

the subsequent radiation emitted by the diode passes through an unsilvered

portion of the glass dewar. The diode laser is attached to the trans-

mission line so that the emitted radiation direction is roughly horizontal.

The test tube contains liquid oxygen while the dewar contains liquid

nitrogen; the reasons for this arrangement can be explained through con-

sideration of the following. When high current densities pass through
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the diode, heat is generated because of nonradiative recombination and

joule heating 40'*. If, in this situation, the coolant surrounding the

diode is at its boiling temperature, then bubbles will form at the surface

of the diode. These bubbles act like spherical lenses and interact with

the diode beam in an undesired fashion. In the geometry of Fig. 4-3, the

oxygen is cooled to the nitrogen temperature and it was found experimentally

that no bubbles were formed in the oxygen. The nitrogen does boil; however,

the bubbles are sufficiently far away from the diode so that no single

bubble can intercept the entire diode beam. The liquid oxygen is formed

by condensation from relatively pure oxygen gas, thus, the liquid oxygen

surrounding the diode is free from contamination. Also, the gaseous oxygen

flush prevents ice from forming on the diode or test tube walls.

4.3 COLLIMATOR

THe collimator, which converts the diverging diode radiation into a

parallel beam, is shown schematically in Fig. 4-4 . The laser diode is

placed at the position PF. The diode radiation is collected by lens LI.

The beam emerging from LI is focussed by another lens L2 through an

aperture AI. The diverging light from the aperture AI is converted into

a parallel beam by the lens L3 and the final aperture A2 is used to con-

trol the diameter of the working beam. The lenses LI and L2 are identical

and have 83 mm focal length and 51 mm diameter. The lens L3 has 17 mm

focal length and 17.5 mm diameter. The aperture AI is a pinhole having

a 0.01 inch diameter. The aperture A2 is a diaphragm whose circular opening

can be varied from 1/64 to 9/64 inch diameter. The distances dl and d2

are adjustable. Under operating conditions, the diode is positioned at

the primary focal point of LI and the pinhole AI is positioned at the

secondary focal point of L2 and the primary focal point of L3. Experi-

mental testing of the collimator shows that the divergence of the working

beam can be reduced to approximately 7 min. of arc and possibly less.

* Ref. 40 is a comprehensive review paper on injec;ion lasers, covering

nearly all of the published works through late 1963.
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4.4 POLARIZER AND ANALYZER

Both the polarizer and the analyzer are Glan-Thompson prism polarizing

devices 8'*. Relevant information for the particular prisms used in the

ellipsometer is as follows. The prism material is single crystal calcite

and the physical dimensions of each polarizing device are 8 mm by 8 mm

by 20 mm. (The light enters and leaves the square ends.) The optic

axis is aligned, within 5 min. of arc, perpendicular to two of the Prism

sides and parallel to the cemented interface. The cement used is

butyl-methacrylate, having a refractive index of 1.51 at 5893A and a

useable transmission from 3500A to 23000A. The electric field trans-

mission axis is parallel to the optic axis direction. The Glan-Thompsons

are used at normal incidence, however, angles of incidence up to 17

deg. can be tolerated without degradation of performance; thus, the

requirements on beam collimation are not strigent. The extinction

ratio, as measured in the ellipsometer, is greater than 1,000,000:I.

The Glan-Thompsons are mounted on divided circles which can be read by

vernier to I min. of arc.

Since the caiibr_iiun u_ .... d _n_ yzcrs ,_ ra, e.y _,pUlal,ZeCS _ I :_ _ _ di__Jssed

in the ellipsometry literature we shall give a brief description of our

calibration procedure. In ellipsometry it is necessary to know the

direction of the electric field transmission axis with respect to the

specimen plane of incidence for both the polarizer and the analyzer.

In our ellipsometer, the plane of incidence is roughly parallel to the

surface of the base plate.

Consider Fig. 4-5. In (a) is shown a plane wave being reflected

from an absorbing surface. The incident wave is assumed to be linearly

polarized after passing through a polarizer. The electric field am-

plitude of the incident wave is _ . The direction of the polarizer

transmission axis P-P is located by the angle _ . When _ =0 , E

is perpendicular to the plane of incidence. After reflection, the incident

wave is generally elliptically polarized. The reflected wave is passed

through an analyzer whose transmission axis A-A is located by the angle

shown in (c). We shall define I= o as the electric field amplitude of

* Purchased from Crystal Optics, 3959 N. Lincoln Ave., Chicago 13, III.
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the wave emerging from the analyzer. The componentsof the reflected

wave are given by

e

Erp = R_EL_ ri,e_?5_ P s_,,. p E 6 , (56a)

Efs , RsE{.s : Fsexp_s cos _ E_. .

After the reflected wave passes through the analyzer we have

(56b)

Eo = F--rs cosa, + F_.r.P s_. o, .

By substituting (56) into (57) we have

+ ar rs a- cos8 ,

(57)

(58)

where _= _- _S • Note that _o is the intensity of the light

TransmitTeci through iitu _Imaly_, . 4,,,v_............_VV_. _ +h_+..............+h_ pnl_riTAr and

analyzer are "crossed," i.e., _I_= _ __.IT/?_ . Eqtn. (58) becomes

(z_.)/Z) "+"q - _'p's _"""/ "1.

The quantity Io, is a symmetric function of _ , that is, _o,(_)= I.((-(_).

This symmetry is used in the calibration procedure as follows. The

analyzer transmission axis is set at some unknown angle* _>0 The

analyzer divided circle will read A! The polarizer is set at ** O,±_T/_.

The polarizer divided circle will read _ For this situation a certain

signal will be registered on the detector. The analyzer is rotated to

a negative angle such that, with the polarizer crossed, the same signal

* Assuming that -_/Z _ &= _ = +_r/£ , it is possible to determine

whether _ is greater or less than zero by visually inspecting the Glan-

Thompson prism.

** The scale readings which correspond to crossed polarizer and analyzer

can be determined by measurements taken with the ellipsometer in the

"straight-through" position.
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is recorded by the detector. Nowthe divided circles read A 2and _z *
The reading on the analyzer divided circle which corresponds to _=Ois
then given by (A I + _2_/_ . The reading on the polarizer scale

which corresponds to _:3TIZ is given by ( _ + P_IZ •
By using an evaporated silver film deposited on a microscope slide as a

reflector, it has been possible to locate the polarizer and analyzer

transmission axes (with respect to the plane of incidence) with a pre-
cision of + 2 min. of arc.

4.5 SPECIMEN CHAMBER

The chamber containing the GaAs specimen serves several purposes.

The specimen can be cooled to approximately 77°K by a thermal conduction

path to a heat sink in contact with liquid nitrogen. To prevent con- .

vective heat losses and to prevent contaminants from condensing on the

qpA_im_n surface, the environment surrounding the heat sink and the

specimen can be evacuated. Optical windows mounted on the chamber walls

allow the working light beam to enter and leave the chamber. The

' • _-^^ cpt;_=t I_* ith a surfacewlnaows are high qu_i_ay, strain ..... .--- 9- w

flatness of 4/4 and surface parallelism of 30 sec. of arc. There are

six optical windows which are used in pairs. One pair permits the light

beam to pass undeviated through the chamber when the specimen is with-

drawn. (This is called the "straight-through" position of the ellipsometer.)

Another pair of windows permit specimen investigation at angles of incidence

between 53.5 and 56.5 deg. The position of each window can be adjusted

so that its surfaces are perpendicular to the beam passing through it.

The manner in which stress is applied to the specimen can be under-

stood by examining Fig. 4-6. The specimen is attached to a metal bar

which is clamped at both ends. Two equal forces are applied to the bar

* Fabricated by Unertl Optical Co., Pittsburgh.
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Fig. 4-6 Scheme for applying stress to specimen.
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as shown in the figure. When the forces are applied, the top surface

of the bar is put in compression. This compressive strain is transmitted

to the specimen through the adhesive which bonds the specimen to the

bar. The magnitude F of the forces can be controlled by _ mechanism

which is external to the specimen chamber. The specimen is bonded to

the bar at room temperature or higher, therefore, it is desirable that

the thermal expansion coefficient of GaAs match that of the metal bar

in order to avoid temperature-induced strains in the specimen when it

is cooled to nitrogen temperature. The expansion coefficient of GaAs

_ _ 37at room Tempera,ure is 5.7 x I0-6/oc. In addition to having the

appropriate expansion coefficient, the metal bar must be sufficiently

elastic to introduce, without permanent deformation of the bar, a strain

in the specimen large enough to change its optical properties in a

measurable way. Sturge 37 applied a strain of roughly 4 x 10-4 to a

GaAs sample and was able to detect a significant change in the absorption

coefficient in a transmission type ,,_asurem_nt. Zirconit_m was chosen

as the metal for the bar. The thermal expansion coefficient of polycrys-

talline Zr is given as 38 5.89 x I0-6/°C at a temperature of 20°C. For

given forces F , the amount of strain which can be introduced al the

surface of the bar dep_,ds on _h_,,,_d_n_i_n_.. __ , d , _ , and

(see Fig. 4-6) and on the modulus of elasticity of the bar. An order

of magnitude calculation of the strain follows.

When the bar is loaded by the forces F , the deflection of the

bar and the strain at its surfaces can be found by using the double
39

integration method for statically indeterminate beams. We shall assume

that the GaAs sample presents negligible resistance to the bending of

the bar and shall ignore the bar's weight. The bending moment at any

cross-section of the bar located between the forces is constant because

of the symmetry of the geometry, therefore, the strain on the bar's

surfaces is uniform between the forces. This strain is given by

_ = (3_F/Ebl_)'(d/_) _ ' (60)
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where __ is the bar's modulus of elasticity which, for Zr, is given as

approximately 107 psi 38 The quantity E is the compressive strain at

all points of the bar's top surface located between the forces. The

bars used in the sample chamber have approximately _- 1.5 in., _ =

1.0 in.,_-- I/8 in. and 6 = I/4 in. which yields

,.u 5"X F" ,_ (61)
= I0 -_

where F has the units Ibs. The maximum deflection of the bar occurs

at its middle and is given by

3F l--_- •
_w_a_ = _)--_" (62)

For the Zr bar under consideration, (62) becomes

_x _ 0._ F

(63)

where _ax is in mils (0.001 in.) and F is in Ibs. From these

rough computations it appears that a Zr oar of dimen_iu._ ....._,,o,_=,'_--^_

above should be satisfactory provided one can obtain good strain coupling

from the bar to the GaAs specimen.

At present there remain some unfinished tasks with regard to the

specimen chamber. The strain-producing n_,a,,ism ,,_= to _ _=1;k_+_

in order to establish a correlation between an external adjustment and

the magnitude of the strain produced in the bar by the adjustment. The

first GaAs specimen (about 60u thick) was bonded to the Zr bar with In

solder*. The efficiency of the In for transferring strain from the

bar to the specimen has not yet been established. The optical constants

of the In used should be measured by the two media approach described

in Sect. 3.2. A temperature calibration is necessary to determine the

effectiveness of the thermal conduction path for cooling the specimen

to (roughly) the temperature of the coolant. Thermocouple feed-throughs

have been built into the chamber wails for the latter purpose.

* The indium also serves as the high reflectivity substrate con-
sidered in Sect. 3.3.
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4.6 OPTICAL COMPENSATOR

A mica retardation plate was purchased from Crystal Optics. The

mica plate has a phase difference of approximately 90 deg. at 8400 A.

The diameter of the plate is 22 mm. Mica cleaves easily into plane-

parallel plates uniformity of thickness 36'* better than 30A. The

mica plate is cemented between two glass disks. The disks, which are

2.5 mm thick, have the following properties: surface flatness - _/4;

surface parallelism - I min. of arc; refractive index -1.52. The

cement has a refractive index of 1.51. To reduce the effects owing to

multiple reflections, the external faces of the disks are coated with

a quarter-wave film of magnesium flouride, which has a refractive index

of roughly 1.38. In App. F it is shown that multiple reflections need

not obstruct the use of a retardation plate, however, multiple reflections

do place restrictions on the collimation of the light beam, as shown ,"

in App. B. The fast and slow axes of the plate were located (roughly)

by the supplier and are marked on the edge of the plate by red and blue

dots, respectively. The mica plate is mounted on a divided circle

which can be read by vernier to I min. of arc.

located with respect to the plane of incidence. Once the polarizer and

analyzer are calibrated it is sufficient to establish the compensator

divided circle reading which corresponds to the case when the fast axis

is parallel to the analyzer transmission axis. Suppose that the ellips-

ometer is set in the "straight-through" position with crossed polarizer

and analyzer as shown in Fig. 4-7. The compensator is placed between

the polarizer and the analyzer. The electric field emerging from the

polarizer is E_ which has components E_s and F-L_ . The electric field

emerging from the compensator has components Eosand Eo_where

It is not known whether our retardation plate has a surface

uniformity of 30A, however, Crystal Optics has an outstanding reputation

for making very high quality optical components.
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Fig. 4-7 A-A is the analyzer transmission axis.
P-P is the polarizer transmission axis.
f-f is the fast axis of the compensator.
s-s !s th_ _l_w axis of the compensator.

AI Li A2 L2

-I°I°2 

AMR FILTER

i

R
SCOPE I

Fig. 4-8 Detection apparatus.
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B

(64b)

The electric field emerging from the analyzer is _o where

Eo : cosc - Eo5 c . (65)

The transmitted intensity is found by substituting (64) into (65) to

obtain

(66)

By setting the fast axis at some unknown angle C>Oa certain signal is

registered on the detector. The compensator divided circle reads C
I

The fast axis is rotated to angle -C (with a scale reading of C z ) for

wnicn The same signal is aeTecTed, lhen The tasT compensator axis _s

parallel to the transmission axis of the analyzer when the compensator

divided circle is set at (C, +CZ_/Z o

4.7 DETECTOR

A diagram of the detector apparatus is shown in Fig. 4-8. Part of

the beam reflected from the sample is passed through an aperture AI,

focussed through a pinhole A2 by lens LI, recollimated by a lens L2, and

detected by an RCA 7102 photomultiplyer tube (S-I response). Aperture

AI is variable from 1/64 in. dia. to 9/64 in. dia. while A2 is fixed at

0.01 in. dia. LI and L2 are identical, with focal length 17 mm and

dia. 17.5 mm. The distances dl and d2 are adjustable. The apertures

allow resolution of the angle of incidence and insure that the detected

beam always strikes the same area of the 7102 photocathode surface.

AMP. is a transistor emitter follower-amplifier with a voltage gain of

approximately 800 when terminated in 50 ohm. FILTER is an electrical
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filter (50 ohm input and output) with a passband from 0 to 1.7 mcs.

This passband allows transmission of most of the signal pulse(about
0.6 usec duration) but blocks muchof the 7102 dark current noise.

The signal pulse from the filter is displayed on an oscilloscope.
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In Chapt. 2 it will be necessary to know how a wave is transmitted

through two plates, therefore, in this appendix we shall consider a

four media geometry rather than the three media geometry of Fig. I-I.

In the four media case, the second medium(first plate) is of thickness

el/2 , the third medium (second plate) is of thickness _3 , and the

fourth medium extends from _ _ 0/2÷0/3 to _ = CI_ . All media are

birefringent with one principal axis in each medium perpendicular to

the plane of incidence, or the _ plane.

The "positively" traveling waves in each medium have electric

fields which are of the form

while for the "negatively" traveling waves we have

(IA)

where _. = 1,2,3,4 for the"positively running waves and _. = 1,2,3

for T_e "negatively" running waves. Ihe magnetic tiel_ vectors are

found by substituting (IA) and (2A) into the Maxwell equations. The

procedure for finding the reflectance and transmittance formulae is

conventional in that traveling wave solutions are assumed for the mag-

netic and electric fields in each medium; the desired formulae are

then found by solving the set of equations obtained by requiring the

total tangential fields to be continuous at the boundaries _ = 0 ,

= _Z ' and _ = d 2 + _ .

Consider first the waves of the extraordinary type which have only

3& and _ components of electric field and _ components of magnetic

field. In this case the % components of electric field and the

components of magnetic field must be continuous at each boundary. The

boundary conditions, when applied to the electric fields, yield
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(3A)

: + E;exp(-_ _; _ (4A)

•,F •

_._ex_,(-,_l;;{a_..ct,))+E.;exf,C-_,s_(a=.a_/')= E.,,ex1:'(-3,S+(a_.+a,)') , (_A)

where the _ subscript is understood to be affixed to each electric

field component, e.g., E_+l - The subscripted

of the form
4- 4-

_+ : 2_ n_ cose_/'x .
(6A)

All of the magnetic fields have the form (MKS units)

4- 4- +

quantities are all

(7A)

By substituting (IA) into (7A) we have

( ,,.,p.,'x/'_) _" + +

f (+ ") twhere _r + ÷- E_z/E;,_. s_e_

I have chosen the "positively" traveling wave in medium 2 for i llus-

tratory purposes in (6A), (7A), and (8A). Analogous expressions exist

for all of the other waves. When the boundary conditions are appl led

to the magnetic fields we have

(IOA)

: E, ex_-i_;
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where an _ subscript is understood to be affixed to each electric

field component as in eqtns. (3A)-(5A).

Before jumping to solutions, a few remarks are in order. Eqtns.

(3A), (4A), (SA), (9A), (IOA), and (IIA) constitute 5i× equations in

the six unknowns E__, _ _= 2,3,4 and _ , _ = 1,2,3. Note

that the incident wave is assumed to have known characteristics,
+

therefore, E%a is not an unknown. The solutions of primary interest

in this work are those which describe the reflected wave in medium I

and the transmitted wave in medium 4. The final solutions will be in

+
+ /the forms _ / _-_l (tangential reflectance) and E_ E_I

(tangential transmittance). Knowledge of the _ components is suffic-

ient to completely specify all of the electric and magnetic fields for

÷ / +
the reflected_and transmitted waves. E_4 Ex_ , for example, is

fixed and H_ can be found from an eqtn. similar to (7A). While
0" I

they do not appear explicitly, the fundamental relations ,

• " _' 2,3,4_
"_ _" ' I ""

n, e,*-
B

(12A)

have been invoked tn obtain the six equations mentioned above. It is

of interest to note here that the common rule, "The angle of incidence

equals the angle of reflection," does not apply; in general _ _; _/=

S_9_ , _ = 1,2,3, when the @_ are arbitrary.

The solutions for the tangential reflectance and transmittance can,

no doubt, be written in a variety of ways, however, for reasons which

will be clear later, I prefer the following:

E;,,
Z-';-. =
Exl

(14A)
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where

(15A)

= ) (16A)

The two media tangential reflectances and transmittances are defined by

I n-- fl-- _ II I1-- fl..l"_

-k%- - ) ;

"i" - +

"{-_?. = k,"3 _' \'_'_, - "(¢$1 -

(17A)

...... : :_ (IRA)--[IAAI nn_ r_n porr_ivp a natt_rn which would

allow extension of the solutions to include any number of plates (multi-

layers) without having to go through the labor involved in solving

simultaneous equations. The multi layer problem could also be handled

•33
by an adaptation of the matrix techniques devised by Partovi .

Eqtns. (5) and (6) in Chapt. I can readily be obtained from

(13A)-(16A). The convenient way to achieve this is to consider that

media 3 and 4 are identical and then replace all 4 subscripts by 3
4- ÷

subscripts, e.g., __x_--> Ex_ When this is done we find that

r_4")O) _4-_I ) Rz4 -> rz_, Tz4-> _a3 , and (5) and (6)

appear from (13A) and (14A), respectively.

The solutions (13A) and (14A) are not yet complete; auxiliary

relations must be obtained for the _ , #? , , = 2,3,4 and

(_i ' I"l_,, .,_7 , _r,. = 1,2,3. In the work to follow we shall, at

times, omit the _ subscripts, which identify the medium under consid-
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eration, and the -F , -- superscripts, which distinguish the "positively"

and "negatively" running waves. Further, it will be convenient to use

the following definitions:

_o=¢<+_,_,-(+,</_,')] , _,l<>: _','+ N,r_,-(_,i_a] .

_ and E_ can be called principal dielectric constants, while _ is

the dielectric constant of a wave.

The dielectric constant E must satisfy

(18A)

where _ and S_ are the _ and _ components, respectively, of the

unit wave normal S and are given by

(19A)

Equations (12A) and (18A) constitute two equations in the two unknowns

and _ . Note that _+ is considered to be known, hence, _t(°r
i

_# , _ given airectiy by tLj ;H _,,oe,. I.

Elimination of E from (12A) and (18A) yields

(20A)

where

(21A)

In the _th medium, both _ and _# are found from (20A). The

two roots _; and _# are easily identified, however, because 0_

/-- 90 ° and 90° z-__# _ 180o" The conditions for 180o__ _ _

(angle of incidence equals angle of reflection) can be discerned from

(20A) and (21A).
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After determining _ , the corresponding _ can be found from

(12A). Alternatively, a direct analytical expression for FI can be

used. Elimination of 8 from (12A) and (18A) yields

(22A)

Unfortunately, the + (-) sign in (22A) does not necessarily go with

lq_Ll_ although both I'1 and Fi are found from (2ZA). Some
information apparently was lost after a squaring operation was performed

enroute to (22A). If 8; and O_ are found first and if S_O;> Si,_dg_a

then (12A) requires that FI__ < _ , thus, the negative sign in (22A)

corresponds to IFI_ . This conclusion is reversed if 51_ O; < $_ dg_'

The siqnificance of E 6 and _?0 is apparent from (22A); when _-0 °

we have _- E o (single solution for both _._ and _c ) and when
Ip #

@=qO ) G=E I0

Ti_ _a=, remalni.._ task ;_ +m rl_+mrmin_ # which is used in

(17A) and defined by (8A). For a wave traveling in an anisotropic

dielectric, the electric flux density _ is related to the electric

field E by34

(23A)

where K o is the permittivity of vacuum. By expanding (23A) in the _F

reference frame we obtain, for the extraordinary waves,

(24A)

where _ and E_ are the o_ and _ components, respectively, of the

vector E From a transformation between the %_ and _# reference

frames we have
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Nowthe _ factors can be obtained by substituting (24A) and (25A) into

the definition for _ , which is

Whenthis is done, the result can be tidied up by using (18A), yielding

Irl _ COS(8-9_) coS@ -- 6_ SC_v_ CB-_) _I_ # (26A)

The solution of the birefringent plate boundary value problem is

now complete in the sense that all formulae necessary for examining the

_,ara_,eristics of the refl _^A and _.... ; ....e_,_ ,,_,,s.... tted waves have been _ived.

It should be remembered that, up to this point, all of the discussion

has concerned waves which have electric fields parallel to the plane of

incidence, or extraordinary waves. The solutions (13A) and (14A) for

the tangential transmittance and reflectance can be applied to ordinary

waves, however, as shown in the following paragraphs.

If the incident wave is of the ordinary kind, it has an electric

field which is perpendicular to the plane of incidence and an _ com-

ponent of magnetic field given by (MKS units)

._ _. : __:__/_,
J

or (- _jv,_ I_) _ - _ _o_e _ •

For the ordinary waves, the _ components of electric field and

components of magnetic field must be continuous across the boundaries,

hence, if we define _, by

_ _ C0S8 , (27A)

then the six equations (3A), (4A), (5A), (9A), (IOA) and (lIA), where

+ +

a _ subscript is understood, e.g., El --> _i , are valid for

the ordinary waves.
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Various simplifications arise in the case of ordinary waves. In

the qth mediumboth "positively" and "negatively" traveling waves have
the same index of refraction or

Also, "the angle of incidence equals the angle of reflection," so

that . • O+

The implications of (28A) and (29A) are that

_% =- - : n_% co_o% ,

Using. (30A), the solutions for the tangential transmittance and re-

flectance simplify to

F ÷

(3

• ° |I. -- • i - _ #

• 2d_
" I i,,, " _ , • -- •

(31A)

(32A)

t_ t_+exp(is+d_-iS,of,)
l+ r_+r++exr(-j:z D3J+")

! + r+sr++exp(-3zs3d_')

(33A)

(34A)

The two media transmittances and reflectances are given by

r,_.:(x+,- #+:.')/(-k+<') ; _,-,.:_+,I( f+,+_D,

(35A)
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Eqtns (31A)-(35A) are identical to those obtained for isotropic

media and can be found in a numberof texts on optics and thin films;

they have been included in this appendix mainly for convenient refer-
ence.
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Exact Theory of Retardation Plates

Thls appendix Is a self contained work and, In fat*, has been

published in the Journal of the Optical Society of America, vol. 54,

p. 115, 1964. The differences between this appendix and the published

paper of the same title are only minor. Permission to reproduce the

published work has been granted by the Journal of the Optical Society

of America.
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Abstract

Exact Theory of Retardation Plates*
D. A. Holmes

Department of Electrical Engineering

Carnegie Institute of Technology
Pittsburgh 13, Pennsylvania

The conventional solutions to the problem of normally incident

light transmission through homogeneous,birefringent, non-optically
active, non-absorbing, crystalline plate are not exact. Whentreated

as a boundary value problem in electromagnetic field theory, exact

expressions are obtained for the retardation or phase difference and
the electrical field amplitude ratio. The two solutions differ in

some interesting ways that becomeof substantial importance in the ex-
amination of laser light. The nature of the exact solutions is examined

in detail and numerical comparisons with the conventional solutions are

given for the cases of calcite and quartz, neglecting the optical activ-
!ty of cry_ta!!!ne quar+z _nr q_Jartz it is shownthat one can obtain

a quarter-wave plate by using any one of a numberof different crystal
thicknesses. The application of wave plates in the investigation of

elliptically polarized light is briefly discussed. For small angles

of incidence, the effects to be expected for light which is obliquely
incident on the plate surface are investigated.

*This work was supported by the National Aeronautics and Space Admin-
istration under contract NAS8-5269.

J.,
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INTRODUCTION

It is not generally acknowledged in the scientific literature that

•he commonly used expressions which describe the polarization state of

an electromagnetic wave emerging from an anisotropic dielectric plate

are approximations which have been derived by neglecting the effect

of multiple internal reflections between the plate suFfaces. To re-

view briefly the conventional theory let us consider Fi_. B-I. An

anisotropic dielectric plate of thickness cl has been oriented with

respect to an _ coordinate system such that the principal axes

of the plate are aligned with the coordinate axes, witl_ the _ plane

coinciding with one of the crystal surfaces. The index of refraction

in the _ direction is denoted by _ , in the _ direction by FI_

and in the _ direction by Ifl_. It is considered that a monochromatic.

plane wave of angular frequency _ and traveling in the positive

airection is normGily !.nciden+ on the left crystal surface. The com-

ponents of the incident electric field are then given by

£....= E.. e J'_ ,
"_" "" (la)

(Ib)

where _ /_-- po_ , _ is time, #o =a'a'/'_'o , and _o is the

vacuum wavelength. At this time EZ_ and E_ are considered to be

real numbers. The traditional geometrical optics solutions I for the

components of the transmitted electric field are then given by

6o .
.

] ,  2a)

(2b)

IFor an equivalent analysis see, for example, M. Born and E. Wolf,

Principles of Optics (Pergamon Press, Inc., NewYork, 1959), pp. 688
et seq.
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where F_ = 2T/_xl_o and #_ = 27T_ /_.. The phase difference

between the _ and _ components is given by

(3)

The subscript _ may be taken to imply that _ has been calculated by

approximate theory. It is to be noted that, for the approximate theory,

the amplitude factors of the _ and _ components of the transmitted

wave are respectively set equal to the oc and _ components of the

incident wave, i.e., Eow = E_x and Eo_ = EL_ , and that the

phase difference _ depends linearly on the crystal thickness.

Stephanov and Khapalyuk 2 have shown that the approximations of

geometrical optics allow only a qualitative description of the trans-

mission characteristics of an isotropic plate with a negative absorption

coefficient. We shall show that geometrical optics gives only an

approximate account of transmission through a lossless, birefringent,

plane-parallel layer. F. Gabler and P. Sokob 3 have considered the

effect of reflections on the transmission characteristics of ...._'"
U_uuiy

refracting plates, however, they did not compare their solutions with

the conventional solutions and did not give numerical results for actual

crystals. In addition, the reflexionskoeffizient _ used by them did

not take into account the anisotropy of the cry_ial. Therefore, _t is

the purpose of this work to give an account of the nature of the

rigorous wave optics solutions, using calcite and quartz as numerical

examples.

ISOTROPIC PLATE

It is instructional to consider some aspects of plane wave propa-

gation through an isotropic, i.e., _=_= n$ = _ , plate. If the

incident and transmitted electric fields are respectively written as

2B. I. Stepanov and A. P. Khapalyuk, Optics and Spectroscopy, 13, 404

(1962).

3F. Gabler and P. Sokob, Z Physik, 116, 47 (1940).
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j'_ j'£'r- e +jSod.7
Ei -E i e , Eo= Eoe

where E_ and E o are considered to be real numbers, then, by an

analysis similar to that of Fry4 or that of Jacobs, et al.5, one can

find that

= K_. -Y2.

E;. (4)

(5)

(6)

Alternatively, one can derive the above relationships for the

amplitude transmission coefficient E o/E_ and the phase shift _o_-e
6

from transmission line theory, using the concept of wave impedance.

The transmission line approach has been applied successfully in micro-
7 6

wave and optical problems involving geometries similar to that used

in the present work. One can determine the physical implications of

(4) and (5) in a relatively straight-forward manner. For example, when

the plate thickness is equal to an integer multiple of half-wave-

lengths, _=_oI_ _/_ = O_I_Z ,..., the input wave impedance seen

by the incident wave at the _ =0 plane is matched to the intrinsic

wave impedance of air and the plate acts as a transparent half-wave

4Thornton C. Fry, J. Opt. Soc. Am. and Rev. Sci. Instr. 16, I (1928).

5H. Jacobs, D. A. Holmes, L. Hatkin, and F. A. Brand, J. Appl. Phys.

34, 2617 (1963).

6S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio (John

Wiley and Sons, Inc., New York, 1960), pp. 290 et seq.

7H. Jacobs, F. A. Brand, J. D. Me indl, S. Weitz, R. Benjamin, and

D. A. Holmes, Proc. IEEE 51, 581 (1963).

8H. Jacobs, D. A. Holmes, L. Hatkin and F. A. Brand, "Transmission Line

Formulation .for Optical Maser Amplification" (USAELRDL, Fort Monmouth,

N. J., Technical Report 2402, Nov. 1963). Also J. Opt. Soc. Am. 54,
1416 (1964).
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dielectric window. Equivalently, one can say that the reflected wave
is zero becauseeach contribution from an internal reflection has such

phase characteristics that, whenthe infinite summationof all contri-

butions is taken, the net reflection is zero. For the half-wave window,
8=vln_7/- . For any other value of thickness, the input impedanceseen

at _=O is different from the intrinsic impedanceof the input medium

(air). Because of this impedancemismatch, the plate acts as a semi-
transparent window which reflects a fraction of the incident radiation.

In particular, the plate acts as an anti-window whenthe thickness is

an odd multiple of quarter-wavelengths, or when _= (_+0_o/+_,

= O_ I_}3, .... For this case a minimum in the amplitude trans-

mission coefficient occurs and 9=_2_+0_/Z . The minimum in

transmission coefficient is given by Eo/E_ = _/(_t)]V_ .

If we define an error angle e by

(7)

then it is seen that e is the difference between the approximate and

exact solutions for the phase constant of the transmitted wave. The

quantity e is periodic in d , experiencing finite maxima and minima.

By maximizing (7) with respect to _ it is found that

] ' (8)

In Fig. B-2 is shown a curve of e_ versus index of refraction _.

It is seen that the maximum error introduced by using the approximate

solution for the phase constant of the transmitted wave increases with

the refractive index of the isotropic plate.

For later purposes, let us now derive an approximate form for e

which is valid for t _ _ <_ . Rewriting (7) as

- ,
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we recognize that, for (K-I) <_. I , we may approximate e by

 ls4 .
(9)

N O
#w#(K-I /__ : O.t2g radian : ? 7- whichFor I_:7. we have e_- . ,

is in fair agreement with Fig. 2. With the aid of {9), @ can be

approximated by

o +
F (I0)

We note that, in this approximation, when the plate is an eighth-

wave semi-transparent window we have the largest discrepancy between the

exact and approximate solutions for _ . When d = (2r_/l÷1)_ o/_)

v_= 0, I)_)... , we see that 0_ _Z_+011"/_ _ _K-I)/Z , where the

(+) sign goes with even values of_ and the (-) sign goes with odd

values ofv_. We shall hereafter speak of an even (odd) _/_ plate whe0

the plus (minus) sign is applicable.

ANISOTROPIC PLATE

For a given value of thickness, the anisotropic plate will exhibit

polarization dependent window properties. Suppose, for example, that

th_ plate thickness is such that the plate simultaneously acts approxi-

mately as an odd _ /_ plate for the X component of incident electric

field and an even_kl_ plate for the _ component. Then the phase

difference between the emergent _ and _ components will differ from

the value predicted by approximate theory by an amount equal to the sum

of the absolute values of the discrepancies between exact and approxi-

mate theory for the respective 9_ and _ phase shifts. If the plate

simultaneously acts approximately as a transparent window for one com-

ponent and as an anti-window for the other component, then it is clear

that the ratio of the _ amplitude to the 9C amplitude for the

transmitted wave will differ from that ratio for the incident wave.

Both of these features will now be examined from a quantitative stand-

point.
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The results of the previous section can be easily generalized to

the case of a birefringent plate for the geometry of Fig. B-I. The

transmitted electric field componentsfor the anisotropic plate are

EC_ e
Eo:_-

" ,I. + K_._s,.,,,,. (_ ,,Lcos _ J
(12)

where
7-

tlk+l

Kk an a

The phase difference between the 9L and _ components is now given by

Ae= 0_-O x : 0_o_ _i; (13)

while the amplitude ratio is

%___._- .
_ _ (14)Eo_ E_ o'; _& + K_ __

To gain an understanding of the way _e compares with A_ ,

in Fig. B-3 we have plotted the difference /ke- /k_ versus _/'_'o

for a calcite crystal using 13_ = 1.64869 and l(ix = 1.48216. The

values of _I_ and l_x correspond to a wavelength of 8010 Angstroms. 9

From inspection of Fig. B-3, it would appear that the error angle

/k_--_ has an amplitude modulated sinusoidal variation with

crystal thickness. Indeed, this is approximately the case, as will
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now be shown. If we write

then by using the result (9), one can obtain

or

e 2_
(15)

For calcite we have that

The maximum excursion of _e-/_ from zero is about 5.5° as deter-

mined from Fig. B-3, which is in good agreement with The approximetion (!5).

Next we consider the shift in the amplitude ratio which is given

by F in (14). For calcite, F is plotted versus d/_o in Fig. B-4.

It is noted that F can differ from unity by as much as 10% for the

exact theory, while F is considered to be unity for all crystal

thicknesses in the approximate theory. A simple approximation for F

can be obtained as follows.
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%

-
(16)

Since K_ > I<x one can see that (16) would tend to oscillate about

a value less than unity. This behavior can be detected by examining

Fig. B-4.

Regarding the general oscillatory nature of A e- A_ and F

for calcite one observes that the period of the slowly varying factors

given by (_-_Ix_ -i_ Co and that the period of the rapidly varyingis

factors is (V1_+flx')-I _ 0._?-.

In Fig. B-5, _e and /_ are both plotted for values of phase

shift in the range 72°-106 °. For certain values of phase shift, e.g.

82 °, it can be noted that three different crystal thicknesses would

yield identical values of phase shift, according to exact theory.

Turning now to quartz 9, for _ = 8325_, we have l_Ix = 1.53773 and

r1_ = 1.54661. Now the rapidly varying factor in (15) has a period

(_x ÷Ti =0.325, which is nearly the same period as that for calcite.

The period of the slowly varying factor for quartz is(_ TI_-|_- =-I 13,

which is over an order of magnitude larger than the corresponding

number for calcite. In Fig. U-6 the exaci pi,ase shift _ :....

pared with the approximate phase shift _ for thickness values in

the range 26.4 - o= 30.0. It is seen that A e oscillates

about t_ in a regular fashion with the maximum difference between

_e and _ being somewhat greater than 5°. Further it is seen that

21 different crystal thicknesses can be used to obtain a phase shift

of 90°, according to the exact theory. Fig. B-7 shows the shift in

amplitude ratio F as a function of d/_o • It should be observed

9For the purposes of numerical computations we have chosen optical con-

stants for calcite and quartz which correspond to near infrared wavelengths

because we are using GaAs injection laser sources (8400OA) in some of our

work. The general concepts advanced in this work, however, are valid for

other wavelengths. The numerical values for the optical constants were

taken from: Dwight E. Gray, Coordinating Editor, American Institute of

Physics Handbook (McGraw-Hill Book Company, Inc., New York, 2nd Edition,

1963), Calcite, p. 6-18; Crystal Quartz, p. 6-24; Rutile, p. 6-33.
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that, for each value of d/_o which gives _e = 900, the corresponding
value of F is different. In closing the above discussion of propa-

gation through quartz, it must be pointed out that crystalline quartz

is an optically active substance. I0 Rather than include the gyration

vector or the optical activity vector in the Maxwell equation analysis

we have chosen to neglect the effects of optical activity in quartz.

To demonstrate in a more vivid fashion the limitations of the

geometrical optics approximation let us consider, as a final numerical

example, transmission through a rutile crystal at 5770 _. At this

wavelength the optical constants for rutile 9 are _ = 2.921 and

x = 2.623. For d/_a = 0.99 the computer calculations reveal that

_e = 80"9o and _= 106.2° . The discrepancy between the wave optics

results and the geometrical optics result is_e-_ _= -25.3 °. For

/_a = 0.86 the electric field amplitude ratio shift is F = 1.48.

For _/_o = 0.77 we have that F = 0.62.

ANALYSIS OF ELLIPTICALLY POLARIZED LIGHT

We now assume that the incident electric field is elliptically

polarized such that E_/E_x = e_v_ . Further we assume that the

=_;muth o¢ the major axis Of the elliptic vibration with respect to the

positive _L axis is given by _ and that the ratio of the minor axis

of the ellipse to the major axis of the ellipse is given by tan_ .
II

These quantities are then related by

(17a)

(17b)

IOG. N. Ramachandran and S. Ramaseshan in S. Flugge, Editor, Handbuch

der Physik (Springer-Verlag, Berlin, Band XXV/I 1961), pp. 76 et seq.

11Reference I, pp. 24 et seq.



81

In the approximate theory, it is generally conceded that _ and _

are measurable by a compensator-analyzer combination and, hence,
and _m4&'a_ can then be calculated. If we consider now that compen-

sation is achieved by an exact quarter-wave plate, i.e., _e = 90o at
the wavelength used, then the compensator setting will yield _ and

(17b) can be used. According to the exact theory, the analyzer setting
will determine _ where _m44_= F _#v_ , hence (17a), in terms of
the measuredquantity _#vmM , becomes

) '
(18)

compensator is not an exact quarter-wave plate, i.e., ----_e_90°,If the

12 13
then the analysis of Hall , or Bergman , can be used, however, (18)

is now modified to

(19)

Equation (19) has been obtained by making the exact theory correction

to the final equation in Hall's paper.

OBLIQUE INCIDFNCF

In the previous sections it was assumed that the incident ratiation

was a normally incident, ideal plane wave. In an experimental situation

when one uses a beam of light it is of interest to be able to assess the

12A. C. Hall, J. Opt. Soc. Am. 53, 801(1963). We have observed a typo-

graphical error in equation (12) of Hall's work. The corrected forms,
in Hall's notation are

The geometry used by Hall is equivalent to that used in the present
work.

13_. Bergman, J. Opt. Soc. Am. 5__22,1080 (1962).
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importance of a non-zero beam divergence and the effects introduced when

the wave-plate surfaces are not perfectly perpendicular to the beam

axis. We shall approach the problems of imperfect collimation and wave-

plate misalignment by investigating the properties of a plane wave

which is transmitted through the wave-plate at oblique incidence. This

is tantamount to assuming that a diverging beam of light can be approxi-

mated by a summation of plane waves which are traveling in slightly

different directions. To simplify the analysis we shall consider that

the beam divergence is confined to the_ plane. An incident plane

wave traveling in the 9C_ plane at an angle _ with respect to the

axis has components given by

• ej_-
E_ Eix e Jr E_'_ - Ei_

where T--O_t-f3o(_S_C +_Co5_) . The incident field also has a

component which can be related to E_x .

Representing the transmitted components by

Eo_ = Gx e s[_'- e,_+ [_oaCO_Z].
,P

it is then {ound that the expressions for _ , _e , and F are still

given by (3), (13), and (14), respectively, when the following substi-

tutions are made:

s;.,,."-c= -- ) (20)

'C _ -- • )

_"- S_." ;. co_ ,.K_ "z nl

_x _ 605 _. (_- S (22)

(23)
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In Fig. B-8 we show _e and _ as functions of crystal thickness

for two waves, one which is normally incident and the other incident in
the _ plane at 5° . It is observed that, if both beamsare simultan-

eously present, the exact theory predicts that it would be virtually

impossible to perfectly compensateboth beamsfor a single crystal

thickness. This feature is not nearly so apparent in the approximate
theory. For example, consider a crystal of thickness _/_o = 2_.0.

At this thickness value, _e for the 5° wave is 4° greater than _e

for the 0° wave, while _ for the 5° wave is only 0.15° greater than

_ for the 0° wave.

In Fig. B-9, _e and _ are shownas functions of the angle of
incidence _ for someselected crystal lengths. For small angles of

incidence such that _ _ = & , _ has a small componentpropor-
°_

tional to _ . The slow variation of _ with _ is apparent from

Fig. B-9.The exact theory, however, indicates that _e has a relatively '_

strong dependence on the angle of incidence for _ >l°°

SUMMARY AND CONCLUSIONS

By using the Maxweil equations with appropriate boundary conditions,

exact solutions for the phase difference and amplitude shift have been

obtained for the case of normal inciGence prop_y_ion through an a_is_-

tropic dielectric plate. Approximations were developed which enable

one to visualize more clearly the functional nature of the exact solu-

tions. The exact solutions were numerically compared with the conventional

solutions, using for examples the optical constants of calcite and

quartz. It was found that the discrepancy between the exact solutions

and the conventional solutions could be as much as 5° for the phase

difference and as much as I0% for the transmitted amplitude ratio.

The limitations of geometrical optics become more apparent when con-

sidering propagation through a crystal with relatively large principal
o

refractive indices. In the case of rutile at 5770 A , the exact and

approximate values of phase difference can differ by as much as 25°.

For crystals characterized by very small differences in the principal

indices of refraction, such as quartz, it was determined that many



different crystal thicknesses can yield identical values of phase

difference. When retardation plates are used in the investigation of

elliptically polarized light wherein lasers or other highly monochro-

matic, well collimated sources are used, it is felt that use of the

exact relations will be necessitated when accurate results are desired.

The exact theory predicts that it is more difficult to compensate all

of a diverging beam of light with a waveplate than does the approximate

theory. It should be observed that, although the thickness values

used in the numerical examples might correspond to physically unreal-

izable dimensions, the general conclusions reached in this work are

still valid because of the periodicity of the exact solutions with

crystal thickness.

The writer is pleased to note that, immediately prior to the sub-

14
mission of this work, Weinberger and Harris reported measurements

which support some of the theoretically based oonclusions reached

herein. Portions of their interpretation of the exact equations are

in error, however. For example, they stated that, for a perfect

quarter-wave plate, the following equations will be satisfied

- = o,
(24a)

nla- = 'Xo/¢ ,
(24b)

where/Y_ is an integer. If we consider that nx , n_ , and _o

are known, then (24a) and (24b) can simply be treated as two simul-

taneous equations in the two unknowns,/_ and _ , with solutions

(25a)

d: ">,o/£4 n,l] .
(25b)

From (25a) it is clear that, only under fortuitous circumstances,

would_¢_ be exactly an integer for a real crystal.

From equation (13) in this work it is determined that 90 ° phase

14H. Weinberger and J. Harris, J. Opt. Soc. Am. 54, 552 (1964).
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difference will occur for values of C_ satisfying

(26)
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Figure Captions for Appendix B

Fig. B-I Geometry used in this work. Theanisotropic plate is assumed

to have its principal dielectric axes aligned with the car-

tesian coordinate system shown. The _ direction is that for

a right hand coordinate system.

Fig. B-2 The maximum error angle @Max , for an isotropic slab, versus

index of refraction _ .

Fig. B-3 The quantity (_e- _ ) versus d/%o for calcite at a wave-

length of 8010 Angstroms.

B-4 The shift in the amplitude ratio F_ (Eo_/Eo_/(E_/ELx_Fig.

versus _/_o for calcite at 8010 Angstroms wavelength.

Fig. B-5 Comparison between Z_@ and _for calcite in the vicinity of

90° phase difference.

Fig. B-6 Comparison between _e and _ for quartz in vicinity of 90°

phase difference. The optical constants used are for 8325

Angstroms.

Fig. B-7 The shift in amplitude ratio F_Eo_/_o_/_E_/E_)_ versus

/_o for quartz at 8325 Angstroms wavelength.

Fig. B-8 Exact ( _e ) and approximate (_) values of phase difference

for quartz as a function of normalized crystal thickness _/_o

with angle of incidence _ as a parameter, n_ = 1.54661.

x: _ = 1.53773.

Fig. B-9 _eand A_ versus angle of incidence for quartz. The

numbers arranged in a column on the right correspond to

values of _[_o • The slowly rising curves represent the

approximate phase difference _ . For _o = 8325

Angstroms, N_= __ = 1.53773, n_l = 1.54661.
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APPEND IX C

Wave Optics Theory of Rotary Compensators

6

This appendix is a relatively self-contained work and has been

published in the Journal of the Optical Society of America, vol. 54,

p. 1340 (1964). The differences between this appendix and the pub-

lished article are only minor. Permission to reproduce the published

work has been granted by the Journal of the Optical Society of America.

The figures and figure captions relevant to this appendix can be

found in numericalsequence at the end of the appendix.

J
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Wave Optics Theory of Rotary Compensators*

D. A. Holmes

Electrical Engineering Department

Carnegie Institute of Technology

Pittsburgh 13, Pennsylvania

Abstract

The theory conventionally used to describe the operation of Berek

and Ehringhaus rotary compensators is based on geometrical optics and,

hence, is not exact. When rotary compensators are analyzed within the

framework of classical electromagnetic theory, exact solutions for the

phase difference and amplitude ratio of the transmitted light can be

determined. The approximate and exact solutions differ in some inter-

esting ways which become of substantial importance in the examination

of monochromatic plane waves of light. In particular the discrepancies

between exact and approximate solutions become more pronounced at high

angles of incidence. Exact theory predicts the possibility of using

a high refractive index isotropic plate for measuring small phase

differences at relatively long wavelengths.

This work was supported by the National Aeronautics and Space

Administration under contract NAS8-5269 and forms a portion of a

thesis submitted to Carnegie Institute of Technology in partial

fulfillment of the requirements for th_ degree of Doctor of Philosophy.
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I. INTRODUCTION

Rotary compensators are often used in determining the character

of elliptically polarized, monochromatic, plane wavesof light. We

can obtain a qualitative understanding of the operation of rotary

compensators by examining the geometry depicted in Fig. C-I. Crystalline

plates I and 2 are mounted back to back, and anX_coordinate system
is defined such that the_ plane is at the interface of plate I and
medium I. For convenience, the orientations of the crystalline plates

are restricted io the extent fhat the principal dielectric axes of each

plate are assumedto be parallel to the _ , _ and __coordinate axes.
The subscripted n quantities are then the principal refractive indices

of plates I and 2. The surrounding isotropic media I and II have unity
index of refraction. The plane wave under examination is incident such

that the plane of incidence is the_(_ plane while the incident wave '
normal makesan angle _ with respect to the _ axis. The electric

field vector of the incident wavecan be decomposedinto two components;
one component is polarized parallel to the plane of incidence and is

designated the _ component, while the other is polarized perpendicular

to the plane of incidence andis designated the S component. This
classification is similar to that commonlyused in ellipsometry work. 1'2

The ratio of the + and $ componentsof the incident wavecan be

characterized by an amplitude ratio tan_ and a phase difference _

as fol lows _

: e L ,
(I)

IR. J. Archer, J. Opt. Soc. Am. 5__22,970 (1962).

2F. Partovi, J. Opt. Soc. Am. 5__22,918 (1962).
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where Ep_ and Es_ are the respective f_ and S components of the inci-

dent electric field vector.

After the incident wave propagates through the system of birefrin-

gent plates it emerges into medium II as a plane wave whose _ and $

electric field components can be written as

Ero/Eso = • (2)

The components of the output wave are related to the components of the

input wave by

In (3), A, is the phase difference introduced by transmission through

the plates and T is an amplitude ratio factor. The quantities #_ and "

T are considered to be known functions of the principal indices of

refraction of the plates, the plate thicknesses 4| and _Z • the angle

of incidence, and the wavelength.

The optical measurement of _and _ is then accomplished by

rotating the plates about an axis parallel to the _ axis, thus chang-

ing the angle of incidence, until the phase difference _ is adjusted

to such a value that the output wave is linearly polarized. The linearly

polarized output wave can then be extinguished by an analyzer. From

the rotational setting of the birefringent plates we know _ and hence

can calculate _ . From the analyzer setting OCo is determined and,

since T is known from the rotational setting of the plates, we can then

calculate _ . Although the complete polarization state 3 of the

incident light can not be determined by the above measurement, in many

cases, particularly in ellipsometry experiments, the determination of

_ and _ is sufficient.

3C. A. Skinner, J. Opt. Sac. Am. and Rev. Sci. Instr. I0, 491 (1925).
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A system of birefringent plates that is used for compensating
phase differences in the mannerdescribed above is called a rotary

compensator. This definition of rotary compensators then excludes

those of the Senarmont type4'5, which are usually provided with a

mechanism to achieve rotation about an axis parallel to, rather than

perpendicular to, the direction of propagation of the incident wave.

Among the better known of the present day commercially available

rotary compensators are those of the Berek type 6-8, manufactured by

-- Leitz, Inc., and those of the Ehringhaus type 9_. , manufactured by

Carl Zeiss, Inc. The typical Berek compensator consists of a single

calcite plate (uniaxial crystal)usually about 0. I mm thick, with the

optic axis normal to the plate surfaces. The geometry of Fig.C-Lcorre-

sponds to that of a calcite Berek compensator if we set

(4)
dl'," dz = d o.I ,

where O0 is the ordinary refractive index and _ is the extraordinary

refractive index. A typical Ehringhaus compensator uses two plates

of quartz (uniaxial crystal). The plates are of equal thickness,

usually 1.0 mm each. The optic axes of the two plates are mutually

perpendicular and are both parallel to the plate surfaces. One of the

optic axes is parallel to the axis of rotation. The geometry of

4H. G. Jerrard, J. Opt. Soc. Am. 38, 35 (1948).

5A. C. Hall, J. Opt. Soc. Am. 53, 801 (1963).

6M. Berek, Mikroskopische Mineralbestimmung mit Hilfe der Universald-

rehtischmethoden (Gebr. Borntrager, Berlin, 1924).

7F. Rinne und M. Berek, Anleitung zu Optischen Untersuchugen mit dem

Polarizationsmikroskop (Schweizerbart'sche Verlagsbuchhandlung,
Stuttgart, 1953).

8M. Berek, Zentralblatt f. Mineralogie 388, 427, 464, 580 (1913).

9A. Ehringhaus, Z. Kristallogr, 76, 315 (1931); 98, 394 (1938); 102,
85 (1939).

/
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Fig_-I corresponds to that of a quartz Ehringhaus compensator if we set

cJ _ l.O /_/_ .
(5)

In order to predict the behavior of a rotary compensator it is

required that one know how _ and "r vary as a function of the angle

of incidence for a given set of plates and a given wavelength. In the

past, rotary compensators have been analyzed by using the tools of
I0

geometrical optics. Burri has shown that the geometrical optics

equations for the phase difference can be written as

'
for the calcite Berek compensator and

a.." ")_-o
(7)

for the quartz Ehringhaus compensator, where _o is the vacuum wave-

length. In the geometrical optics analysis T is set equal to unity.

The above solutions for the phase difference, however, are only

approximate (hence the subscript _ attached to _ ) because the

geometrical optics approach ignores the exis ce of multiple internal

reflections between the surfaces of the crystalline plates. Recent
II 12

experimental and theoretical work has shown that resonance effects

can be very important when wave plates and Senarmont compensators are

used, in an air environment, for examining elliptically polarized, mono-

lOconrad Burri, Z. Angw. Math. Phys. _, 418 (1953).

il
H. Weinberger and J. Harris, J. Opt. Soc. Am. 5__44,552 (1964).

12D. A. Holmes, J. Opt. Soc. Am. 5__44_II15 (1964), (App. B).
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chromatic, plane waves. From information I have received through several

private communications with the manufacturers of Berek and Ehringhaus

compensators, it is apparent that equations (6) and (7) are currently

being used in the calibration of calcite Berek and quartz Ehringhaus
rotsry compensators. Also, Gahm 13 has recently presented e study of

error sources and measurement accuracy in the use of quartz Ehringhaus

compensators. Gahm, however, used the geometrical optics approach and

therefore overlooked those errors which may arise because of inter-

ference or resonance effects, in the present work I will show that

resonance effects are quite significant when rotary compensators in

an air environment are used to examine elliptically polarized, mono-

chromatic, plane waves.

In section 2 the formal Maxwell equation solution is given for the

problem of transmission through two homogeneous, non-absorbing, non-

optically active, crystalline plates mounted back to back and immersed .

in air. The generality of the anisotropy is limited to that shown in

Fig.C-l. The geometrical optics solutions are then obtained from the

exact or wave optics solutions under special conditions. Some useful

approximations are also developed. In sections 3 and 4, comparisons

between the wave Optics and geometrical optics solutions are given

for a calcite Berek compensator and a quartz Ehringhaus compensator,

respectively. The geometries chosen for numerical illustration corres-

pond to those of the commercially available devices. In section 5, an

isotropic rotary retardation plate is discussed.

2. ANALYSIS

In this section we shall consider the electromagnetic solution to

the problem of transmission through two biaxial crystalline plates

corresponding to the geometry of Fig.C-l. The objective is to determine

13j. Gahm, Zeiss Mitteilungen uber Fortschritte der Technischen Optik

2, 152 (1964).
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the expressions for the phase difference and the amplitude ratio factor

introduced in equation (3).

2.1 WaveOptics Solutions

The reflection and transmission properties of birefringent crystals
14

have been studied in the past. Winterbottom , for example, has sum-
marized the wave optics solutions for reflection from a semi-infinite

biaxial crystal and from a semi-infinite uniaxial crystal covered with
15

a uniaxial film. Schopper has given a rather comprehensive treatment

of transmission through a single biaxial absorbing crystalline plate.

The wave optics approach employed by Schoppercan be used to determine

the transmission characteristics of the two lossless biaxial plates
shown in Fig.C-l. From a wave optics analysis we then find that the

phase difference and the amplitude ratio factor are given by

T e_-_ =_.cos_,a,cosN_a_- _,_ _,a, s& _a_

x { cos_e,d, cos _e_d_ - Ke,_ s_e, d, s_Oe_d_
-I

(8)

where

(9) "

14A. B. Winterbottom, Det KGL Norske Vindenskabers Selskabs Skrifter

_, 27, 37 (1955).

15H. Schopper, Z. Phys. 132, 146 (1952).,



I04

(',%_- _g,._-;.

2 l_st¢ "= cos _. + , ) ._= I)'7.)

rl__. - "_w_ '- _
nxz n_. (n._,--s_,, L../ +• _- • _ n=,.%_.k,_" -" "J '

The subscript e has been affixed to _ to indicate that the

difference &e is calculated by exact theory.

(I0)

(II)

(12)

C13)

(14)

phase

2.2 Geometrical Optics Solutions

The geometrical optics solutions can be conveniently obtained

from the wave optics solutions by ignoring the multiple reflection

i effects. The resonance effects are eliminated by setting _s_ =£L_ = K_=_s_=_pt= _'p_= _" By replacing /%e in (8) by /_

we then have

-_'- = i )
C15)

(16)
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When the principal indices of refraction and the plate thicknesses are

specified as in (4), (16) reduces to (6). Similarly, when conditions

(5) are used, (16) reduces to (7).

2.3 Approximations

From (8) we may write

_'e = arctan

- arctan I -- l<._,V."ISOi.'v'i_,(:IlJC_vv__p_.A_. J " (17)

Now let us assume that the numerical values of the respective principal

indices of refraction for crystals I and 2 allow the following approxi-

mations to be made.

Ksl_. = l )

IKSl- _<s_.i <' k_,l't- Ks2,

I Kpi - K?_-1 /.z.,Kp,-i- Kp_. •

Using (18) in (17) we then find that

_e = arctan _(K$1 +

(19)
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Equation (19) is now in such a form that we mayuse an approximation

developed in a previous work on the waveoptics theory of retardation
12

plates to obtain

+ _coses_ _,
(20)

where <_= (K._,÷ _:+._.*_i,,, _<f>,.-',-)/+ ,

e = Cb, + p_,,')=t,+ Cp,:+ p_,<')<t,.

The restrictions on (20) are

> ( _i>,+ _i>'--_5/7-<< i.
(21)

As the angle of incidence L is varied we note that C O_ is a much'

more rapidly varying function of _ than is $I_. In later sections

we shall refer to the function defined by _ _.S_ as the envelope

of _e-_i_ or simply as the envelope function.

3. CALCITE BEREK COMPENSATOR

By substituting (4) into (8) we have that

_e = arctan{ l__s_ -- _?-_i_i,_._pcl

T - _+(,<) ,)_, e>_,a >
where

?+>:(_.,l'x<>')(<,.>__A,<",:_/,..

6_o Co6 _.

2_K?= --

+

-4-

(22)

e_ co6[

(23)
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The geometrical optics value of the phase difference is given by

A_ (_s- _P_ _ , which reduces to (6).

In Fig. C-2a, b is shown the variation of _e- _ as a function

of angle of incidence L for a wavelength of 8010 Angstroms. The

optical constants 16 for calcite are taken as _ = 1.64869 and

E = 1.48216. At this wavelength• we have that d = 120_ o= 0.09612 mm.

This thickness value closely approximates the 0. I mm thickness of the

calcite plate in the commercially available Berek compensator. The

range of 0°L _ L 38°= = covers about 3½ orders of A_ . The envelope

function• given by _ _tv_ is also shown. As an initial obser-

vation we note that the envelope function follows fairly closely the

peaks of _e- _ and also defines the "recurrent" variation of

_e--_ with _ . As the angle of incidence is increased the zero

crossings of the envelope function become closer spaced while the

maximum values increase.

We note that _e can differ from _ by as much as 7.4° at the

higher values of L . We have also plotted calculations for a thin

slab, or _ = 50_o over the range 0° _ _= 19°. In general, the

number of zero crossings of _e-_over a given range of L increases

with the thickness of the slab.

Suppose now we consider the effects introduced by using a diver-

gent beam of light• assuming that, for very small angles of divergence,

say 0.2 °, or less, the beam can be considered as a super-position of

plane waves traveling in slightly different directions. For purposes

of discussion we shall confine the beam divergence to the _ plane.

Suppose further that the input beam is e11iptically polarized and that

compensation is attempted in one of the higher orders, say at & = 26° .

16For illustrative numerical examples we have chosen optical constants

for calcite and quartz corresponding to near infrared wavelengths
because we are using gallium arsenide injection laser sources (8400_)

in some of our work. We assume that no absorption occurs at the

wavelengths used. The general concepts advanced in this work, how-

ever, clearly apply at other wavelengths. The optical constants were

taken from D. E. Gray, coordinating editor• American Institute of

Physics Handbook (McGraw-Hill Book Co., Inc., New York, 1963)• 2rid

edition• Calcite, p. 6-18; Crystal Quartz• p. 6-33.
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If the beamdivergence is contained in 25.9° _ _ L= = 26.1° , a spread

of 18° in _e is obtained and perfect compensation of the entire beam

is impossible. This would result in failure to obtain extinction with

an analyzer. The inability to find extinction is predicted to a some-

what lesser extent by approximate theory, the spread in _being about
9° for the beamdivergence given above.

In Fig. C-3a, b, T is shownas a function of angle of incidence.

Wenote that -l" is roughly periodic with _ and can be as large as

1.2 in the fourth order of _ . An interesting feature is that the
minima of -r tend to rise toward unity as _ increases while the

maximaof T tend to increase away from unity as _ increases.

Suppose now that the compensator is in the diagonal position, i.e.,

l_p_/E_l=__ = | . If the incident wave is compensated, the

geometrical optics approximation predicts that the resultant linear

vibration will make an angle of 45 ° with respect to the _ axis.

Suppose now, that T = 1.15, for the rotational setting at which com-

pensation occurs. Then according to exact theory the linear vibration

is at arctan (1.15) _ 49 °, a discrepancy of 4° with the approximate

theory.

The errors inherent in the geometric approach are more serious

at high angles of incidence. For example_ at angles of incidence

close to 60°, the maximum excursion of _e-_ from zero is about 13°

while T can be as large as 1.58.

4. QUARTZ EHRINGHAUS COMPENSATOR

By substituting (5) into (8), _ and _ef°r the quartz Ehringhaus

compensator can be found. For this compensator, (8) and (17) do not

I significantly simplify, therefore the explicit relations for T and _e

are not contained in this section.

At a wavelength _o = 8325_ , the optical constants 16 for quartz

are taken as @ = 1.54661 and _ = 1.53773. In Fig. C-4, the envelope

of _e-_ is plotted for an Ehringhaus compensator with two crystalline

quartz plates, each plate of thickness _ = 1200_o = 0.999 mm. This



109

thickness value is virtually the sameas that found in the commercially

available compensator. The envelope function for the Ehringhaus com-

pensator exhibits the samegeneral characteristics as does the envelope

function for the Berek compensator. The fine structure in _e- _
which is controlled by the CoSe term in the approximation (20) is,

however, rather different for the respective compensators. The ranges
in _ delineated by the dotted lines in Fi_C-4 are shownon an expanded

scale in Figs. C-5 and 6 to illustrate the implications of the resonance
effects in quartz Ehringhaus compensators.

The actual curves of _e and _ are shown in Fig. c-5 for the
L _ Lrange 5.0 ° = _ 7.5 °. The range of _ covered is only about 15°

with the maximum value of _ being about 28°, yet requirements on

beam collimation are already becoming stringent. For example, consider

a diverging beam which is confined to the range 6.72 ° = = 6.80 °.

Between these limits there is a spread in _e of 4.45 ° while the spread

in _ is 0.53 °. Also, many different rotational settings will yield

the same value of phase difference according to exact theory. If,for

example, a perfectly collimated incident wave can be characterized by

a phase difference S_ = -24 °, we see from Fig. 5 that 9 different

positions of the ccmpensator could be used to compensate the incident

wave.

For the range 47.4 °L _ L= = 47.6 ° we have plotted _e-_ in Fig. C-6.

Over this small range the envelope function, also shown, is practically

a straight line. Let us consider the curve for _ =1200_ o and assume

L
that an incident divergent beam is contained in the interval 47.480 °

_ 47.495 ° . The spread in _e°ver this interval is 12.58°, while

the spread in _ is only 0.32 °. In practice, a beam divergence of

0.015 ° _ 0.00026 radian is quite difficult to obtain, except, perhaps,

from a gas laser. Another interesting feature is the accuracy with

which the rotational setting can be determined. For numerical purposes

let us suppose the setting can be measured to an accuracy of I' _ 0.017 °.

We see that the setting accuracy is not sufficient to resolve the varia-

tion of _e in the range of incidence angles considered in Fig. C-6.

The dependence of _Bup°n_/_0is also shown in Fig. C-6. For a change
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in O_/% o of I/I0 the corresponding changes in _e are quite significant

while the corresponding changes in _¢ are negligible. Exact theory,

in contrast to approximate theory, prescribes very stringent c6nditions

on the monochromaticity of the incident wave and on the surface flatness

of the quartz plates.

5. ISOTROPIC PLATE

The properties of an homogeneous, isotropic dielectric plate

immersed in air are of particular interest in optics 17. In this section

we wish to discuss the"compensator" properties of this geometry. In

Fig. C-I we set all of the refractive indices equal to _ and d i+ d_= _ .

For this case, from (8) we obtain

= i l + _st_'d 1
T _ +Kf'

where

(24)

(25)

17Some aspects of propagation through an isotropic slab are discussed

by M. Born and E. Wolf, Principles of Optics (Pergamon Press, New

York, 1959), pp. 60 et seq.
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In (24), _ is the value of phase shift calculated by wave optics

theory. Geometrical optics predicts that the phase difference produced

by transmission through an isotropic plate at oblique incidence will be

zero.

From inspection of (24) and (25) we note that _ and T are per-

iodic functions of the plate thickness _ . In particular, _ is a

continuous function of _ and passes through finite maxima and minima.

We shall now determine how these maximum values o_ _ depend upon

and _ . If we consider, for the moment, that L and _ are fixed and

then maximize /k with respect to _ , we find that the maximum values

of _ are found for thickness values which satisfy _Iiv_d =CK$_p_ -l--

The corresponding maxima in _ are then given by

Equation (27) represents the maximum possible phase difference for a

given dielectric material at a fixed angle of incidence. The quantity

tkw_ax is plotted as a function of angle of incidence with refractive

index as a parameter in Fig. C-7. It should be noticed that, for

each value ot _x =,,_.,, [., 7[_. _ _ +_ m_rr_sDondin_ optimum value

of _ is, in general, different. The maximum phase difference _ax

increases as either b or n is increased, however,_a_ will never

reach 90° for a finite value of _ . It should be pointed out that

given by (24) approaches zero as _ approaches 90°, except when

18
As Bergman has pointed out, a compensator of phase difference A

can be used to compensate elliptically polarized light provided that

(19)

18D. Bergman, J. Opt. Soc. Am. 52, 1080 (1962).
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whereb/_ is the ratio of the minor axis to the major axis of the

ellipse. From Fig. C-7 we see that it is theoretically possible to use

an isotropic plate to compensatea monochromatic plane waveof ellip-
tically polarized light. The physical and optical properties of the

plate would limit the range of ellipticities that could be measured.

In particular, circularly polarized light cannot be compensatedwith
a single slab.

Let us consider some of the important details concerning the design

of a rotary isotropic slab retardation plate. It is clear from Fig.C-7

that a high refractive index material is desired in order to obtain

a given value of _ without having to go to extreme angles of incidence.

Another important consideration is the variation of _ with _ .

From (24) we note that _ passes through zero when _ = "t_31"/_

where t_ is an integer. For maximum sensitivity it would be desirable

to have the number of zero crossings of _ be as small as possible

' L _ L "over the wcrking:range _ = = LZ . The number of zero crossings

in the working range can be determined by counting the values of

which satisfy

c4a/Xo)(k_ ..,,,,.=
(28)

in theFor a given value of _ , the number of zero crossings of

range _tL= _L= L_ increases as _/_o increases. In order to keep

_/_o as small as possible it becomes necessary to use very thin

crystal plates or, alternatively, long wavelength radiation• For

physically realizable values of _ one may find that a given sensi-

tivity requirement may only be satisfied for wavelengths in the infrared.

With the above considerations in mind let us consider, as a

numerical example, the phase difference introduced by transmission

through a thallium bromide iodide crystalline plate at a wavelength

of _o = I0/_ . We assume that absorption by the crystal is negli-
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length I "gible at this wave 9. In Fig. C-8 is shown _ versus L for this

hypothetical situation. For both plate thicknesses, A has eight

zero crossings in the range 0 °L _ L= = 90 ° . This can be verified

from (28). It is seen that _ has a strong dependence on _ . For

this particular plate we see that the maximum elllpticity which could

be measured is about I/5, if we restrict the measuring range to

OOL= _ L= 60 ° . Thus, it is seen that a single plate would serve

primarily as a device for measuring small retardations or for extending

the frequency range of a quarter-wave plate. By using several plates

in series one could measure larger ellipticities. For this latter

situation one must be careful to space the plates sufficiently far

apart so that reflections from a given plate cannot be intercepted by

the previous plate.

In analyzing the transmitted light one must be aware that the

direction of the resultant linear vibration is affected by the factor T.

given in (25). Note that the amplitude ratio factor -_- will always

be greater than or equal to unity because _($>K_ . An interesting

feature of the isotropic slab retardation plate is that it can be

rendered es_entia!ly inoperative in an optical system by adjusting the

angle of incidence such that JE_i_= O. In this case T = I and
I

t_ = 0o. At the zero setting• or L = 0°, we also have T = I and

/k = 0o, however• the intensity of the transmitted light is diminished

due to reflections back into the optical system. Because of the rela-

tively large dielectric constants required for the plate, the reflections

at normal incidence would not be insignificant and, as discussed by

Winterbottom 20 • would be a source of error in an optical measurement.

19A summary of the optical properties of thallium bromide iodide

(KRS-5) is given in "Synthetic Optical Crystals"• (The Harshaw

Chemical Company• Cleveland 6, Ohio, 1955) rev. ed., pp. 23-24.

We have taken the index of refraction at I0/_ as n = 2.37274.

20Reference 14, p. 68.
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Very pure isotropic semiconductor crystals used at wavelengths

longer than that corresponding to the fundamental absorption edge

also have potential as isotropic slab retardation plates. For example,

with a silicon crystal having a refractive index of approximately 3.5,

one could expect a maximum phase difference of about 35 ° at an angle of

incidence of 65 ° .

6. SUMMARY AND DISCUSSION

The phase difference A e and the amplitude ratio factor -r have

been given for the problem of transmission through two biaxial plates

at an oblique angle of incidence. The orientations of the plates were

restricted to the case for which one principal axis of each plate is

perpendicular to the plane of incidence. The solutions for /ke and _"

can be used to predict the behavior of other optical devices utilizing

the geometry of Fig.C-l.The Soleil compensator 21, for example, is

effectively a two plate compensator which is used at normal incidence,

i.e., L = 0°. By substituting L = 0° and say, _i = _ =

and _x_ = _t = LAJ , into (8), one could predict the exact theory

behavior of a Soleil compensator.

Upon comparing the exact phase difference _e with the approximate

phase difference _we found that, for both the calcite Berek and the

quartz Ehringhaus rotary compensators, the envelope function _$_

provided a relatively good estimate of the discrepance between )_e

and _ . Because IE-u_l is much larger for calcite than for quartz

and because the physical path lengths are an order of magnitude
smaller in the Berek compensator compared to the Ehringhaus compensator,

the resonance effects prescribe more stringent conditions on beam

divergence, monochromaticity and surface flatness for the Ehringhaus

compensator than for the Berek compensator. Also, a given phase

difference A@ can be obtained with many different rotational settings

with the Ehringhaus compnesator, while this effect is nearly non-

existent in the Berek compensator. For the calcite Berek compensator

with _= l_O_ o , we have that _@ /_ is negative over only

21The geometrical optics theory of the Soleil compensator is treated in

reference 17, p. 691.
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one small region of _ , for 00 L _e L= = 180°.

An isotropic rotary retardation plate was proposed. A high re-

fractive index material is desired. The proposed device, for a given

thickness, has a higher sensitivity for relatively long (infrared)

radiation.

A referee has suggested that, "To eliminate internal reflections

and therefore the associated resonance effects, all that must be done

is to immerse the compensator in an index matching fluid." This is a

creative thought and deserves consideration by users and manufacturers

of rotary compensators. Achievement of fluid immersion might, of

course, require a certain amount of mechanical ingenuity, particularly

in instances where a present day rotary compensator is used in an

existing commercial polarizing microscope. Because rotary compensators

can, in principle, be used at any wavelength for which absorption is

negligible, they have potential (as yet, relatively unused) in variable

wavelength ellipsometers. Since many ellipsometers are of the "home-

made" variety, fluid immersion should be relatively easy to implement.

I would like to point out that, for very precise measurements, resonance

effects may not be completely negligible, even with fluid immersion,

because the anisotropy of the crystal used in the compensator does not

permit perfect matching of the J_ and S components of the incident
22

wave simultaneously.
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Fig. C-I

Fig. C-2a, b

Fig. C-3a, b

Fig. C-4

FIGURE CAPTIONS FOR APPENDIX C

Geometry considered in this work. The _ coordinate

system is assumed to be oriented such that the_ plane

is located at the interface of plate I and medium I.

Media I and II are considered to have unity of refraction.

Crystalline plates I and 2 are both assumed to have their

respective principal axes aligned with the _. coordinate

axes. The input plane wave is incident in the%_ plane,

with the incident wave normal making an angle _ with

the _ axis. The permeabilities of all media are assumed

to be equal to the permeabilityJ_ o of vacuum. Further,

we assume that all media are lossless, non optically

active, and homogeneous.

The error angle _e-_in degrees (vertical s_.... as a

function of the angle of incidence L in degrees (upper

horizontal scale) for a calcite Berek compensator. The

values of /k_ are given in degrees (lower horizontal

scale) for 2° increments of _. _e-_ is plotted for

= 120_o (_)and _ = 50_o (_ _ ).

The envelope function is also shown ( ).
o

The wavelength used is 8010A , for which we have

_J = 1.64869 and _ = 1.48216.

The amplitude ratio factor'T =_O_o/__(vertical

scale versus L in degrees (horizontal scale) for a

calcite Berek compensator with _ = 120_)ko ( )

and _ = 50_o( ).

Envelope function _-_5_ _o. in degrees (vertical

scale) versus angle of incidence _ in degrees (horizontal

scale) for a quartz Ehringhaus compensator with _ = 1200_ o

The range 0° z _ L: = 75° covers about 5½ orders of _

at a wavelength of _o = 8325 _. We have taken
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Fig. C-5

Fig. C-6

Fig. C-7

Fig. C-8

6 = 1.54661 and UJ = 1.53773. The intervals de-

lineated by the dotted lines are shown in greater detail

in Figs. C-5 and C-6.

Detail of Fig. C-4 for the range 5.0 ° L _: = 7"50" _e

and A_ are in degrees (vertical scale) and & is in

degrees (horizontal scale). The slowly rising curve is

the approximate phase difference _ . The two dashed

( ) curves correspond to the variation of

the envelope function, _ _ S_ _

Detail of Fig. C-4 for the range 47.4 °L _ L= = 47.6 ° .

#ke--_mis in degrees (vertical scale) and L is in

degrees (upper horizontal scale_. The envelope function

_S_m is virtually a straight line. A e-_

is shown for _ = 1200.0_)_o ( ) and

= 1200. I_o (-- ). The values of the "

approximate phase difference _ are given in degrees

for _ = 1200.O7k o (middle horizontal scale) and for

(/ = 1200. I_)%o (lower horizontal scale).

A_a x in degrees (vertical scale) versus angle of

incidence in degrees (horizontal scale). I: _ = 1.25,

2: _ = 1.50, 3: _ = 1.75, 4: _ = 2.25, 5: _ = 3.00,

6: _ = 3.75.

Wave optics value of phase shift Z_ in degrees (vertical

scale) versus angle of incidence L in degrees

(horizontal scale) for transmission through a thallium

bromide iodide optical crystal. The index of refraction

at Q_o = I_ is taken as _ = 2.37274.
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APPENDIX D

On Fluid Immersion as a Means for

Reducing Resonance Effects is Rotary Compensators

This appendix, which is a continuation of App. C, has been pub-

lished under a similar title in the Journal of the Optical Society of

America, vol. 55, p. 209 (1965). The differences between this

appendix and the published article are minor. Permission to re-

produce the published work has been granted by the Journal of the

Optical Society of America. The figures and figure captions rele-

vant to this appendix can be found in numerical sequence at the end

of the appendix.
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On Fluid Immersion as a Meansfor Reducing

ResonanceEffects in Rotary Compensators*

D. A. Holmes

Department of Electrical Engineering

Carnegie Institute of Technology

Pittsburgh, Pennsylvania 15213

I
In a recent paper , some of the electromagnetic aspects of rotary

compensators were discussed. There the compensator was considered to

be operated in an air environment; the present letter will highlight

some of the effects to be expected when the compensator is immersed

in an index matching fluid 2, using the calcite Berek rotary compen-

sator for illustrative purposes. While we shall consider only the

calcite Derek compensator in this letter, the use of an index match-

ing environment offers possibilities for reducing undesirable

multiple reflection effects in wave-plates 3'4 and other types of

optical compensators.

When the calcite Berek compensator is surrounded by a medium with

refractive index _ , the wave optics formulae for the amplitude ratio

factor T and the phase difference ]ke are still given by eqtns. (22)

and (23) of the previous work I provided that the following substi-

tutions are made:

*This work was supported by the National Aeronautics and Space Admin-
istration under contract NAS8-5269 and is contained in a dissertation

presented by the author to Carnegie Institute of Technology in partial

fulfillment of the requirements for the degree of Doctor of Philosophy.

ID. A. Holmes, J. Opt. Soc. Am. 54, 1340 (1964), (App. C).

2Fluid immersion as a means of eliminating resonance effects in rotary

compensators was suggested by a referee of the previously cited work. I

3H. Weinberger and J. Harris, J. Opt. Soc. Am. 54, 552 (1964).

4D. A. Holmes, J. Opt. Soc. Am. 54, 1115 (1964), (App. B).
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As we saw in the previous work, the envelope function _ _$_-/_

provided a good estimate of the gross variation of /_e-/_ • It is

clear that, if rl can be adjusted to a value such that _:(I<p+I<$--_)/7_

is smaller than the value of _ for i_:| , then the value of _e- _

will be correspondingly smaller for the fluid immersion case than for

air immersion, i_l_and l<S can alternatively be written as .

_:,, 0+r_)/(,-,-_), _ =(,+,",")/(,-_) > <_>

where

nco_. - ( _- _'s_'L)/_"

cos_+ (,,,J'-n" s_ _"0';: >

E<<,<.<>_<:- ,,,(_ ,,_'';;,,,:_)/:"

(3)

(4)

The condition on _ for _--_ to be small can thus be translated into

the physically reasonable requirement that _ be adjusted so that the

Fresnel coefficients r$ and r_ both become small. Because the optic

axis_of the calcite plate is perpendicular to the plate surfaces, the S

component of the incident wave undergoes ordinary refraction at all

angles of incidence. By choosing the index of the fluid as _=&_)i

the plate becomes invisible to the S component, i.e., r$=O , and
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multiple reflections are thereby eliminated. The_C) component of the

incident electric field vector, however, is extraordinarily refracted

by the calcite plate, that is, the index of refraction "seen" by the _p

component is a function of the angle of incidence, hence, no value of 13

will make the plate invisible to the _ component for all angles of

inc idence.

Although /ke- A_ cannot be made identically zero for all

angles of incidence it is possible to choose values for rl that will

make the differences between /_eand _ negligible in most experi-

mental situations. Fig. D-I shows _ versus the angle of incidence

for some selected values of Itl . For curves 4, 5, and 6, I _e- A_I)

which is smaller than _i_ , is practically zero. The range considered

in the angle of incidence corresponds to a range in /k_, for the

case rl=l ) o_ 0 °L A z. I iO0 °

While the deleterious resonance effects can be virtually eliminated

by judicious choice of an index matching fluid we should recognize that

fluid immersion necessitates recalibration of the compensator. Re-

calibration is necessary because the phase difference _L is a function

of the angles of refraction (of the respective _ and S components)

which, in turn, depend upon the refractive index of the surrounding

medium. The usual calibration charts supplied with a rotary compen-

sator are based on an air environment. Also fluid immersion decreases

the precision of the compensator, that is to say, if SL is the rotational

setting accuracy, then the uncertainty in A_, which is given by

(a_/al_'$Lsbecomes larger. These features are illustrated in

Fig. D-2. Finally, we should recognize that the refractive index of

an immersion medium can be temperature sensitive, hence, temperature

control of the immersion medium may prove desirable in an experimental

situation. By referring to Fig. D-2, we note that if the index of the

surrounding media changes from an initial value of n = I.(o_869

to rl=l.7 then the corresponding value of _ shifts from _=9_ °

to A_=99 ° , for /_'6 ° . For operation at high angles of incidence,

the stability of the index of the surrounding medium assumes greater

impor tance.
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FIGURE CAPTIONS FOR APPENDIX D

Fig. I)-I Theoretical variation of _]_=(_p÷K$-_)/7-(vertical scale,

degrees) with angle of incidence _ (horizontal scale,

degrees). Recall that _e _ /_L + _ C0S8_ _

hence, l_e "_I is generally much smaller than _ . The

numbering of the curves specifies the index of refraction

of the f.luid as follows: I: n = 1.45; 2: n=_=1.48216;

3: _ = 1.55; 4: _ = 1.60; 5: n=C_) = 1.64869; 6: _ = 1.70.

The parameters for the calcite plate were taken as c_=IZO_ oD

= 1.48216 (extraordinary refractive index) and L4J = 1.64869

(ordinary refractive index).

Fig. 13-2 Theoretical variation of the geometrical optics value of

phase difference _(degrees) versus angle of incidence 6

(degrees). The index of the surrounding medium is

specified by the curve numbers similarly to Fig. D-I.

For comparison, curve 0 refers to _=I , or an air

environment. The parameters for the calcite plate are

the same as for Fig. D-I.
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In any experi_nt, measurement errors exist which, in turn, in-

fluence the accuracy of calculated quantities. In this appendix I

consider measurement errors in the ellipsometric investigation of

weakly absorbing isotropic substances. Of particular interest is

the manner in which a measurement error propagates in the inversion

relations (26) and (32a, b,c).

E.I. TWO MEDIA PROBLEM (ISOTOPIC GaAs)

In the measurement of L , _ , and _ one has to expect a certain

amount of experimental error. We shall let L , _ , and _/I stand for

true values and _ , _ , and 6_ stand for the respective measurement

errors. The error _ actually represents the calculated error in

when _i+ _/_ and _r + _r are substituted into (23). In the following

paragraphs we consider how the measurement errors influence the accuracy

in calculating the optical constants. We shall not consider multiple

errors; instead, we shall consider a variation in only one measurement

at a time while the remaining measured quantities are held at their

true values. Our approach shall be in the form of numerical examples

rather than be a general analytical error analysis• We might remark,

however, that inspection of (26) indicates that n and _, could be

expanded to first order in _ , _ , and _ by using such approxi-

mations as _L÷_)_S_÷_Co_. We shall begin by assuming various

true values of L , _ , and _ and then calculate the true values of

and _ . Then, after assuming numerical values for the measurement

errors _ , _A , and _ , the calculated values, _c and _c , of

the optical constants can be determined by substituting _+_ _ _+ _j

and _ into the inversion formula (26). We shall consider true

values of L which are close to the Brewster angle when the true value

= 3.58 with the true value of _ in the range 001 _ _ L= .007.

Further we shall assume that the precision of the measurements* allows

*The maximum measurement errors considered here are felt to be larger
than those characterizing our ellipsometer.
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the restrictions that i$_i z_-- .06° = 3.6',I_A_ /-=0.45 ° = 27', and

o. 15° -- 9'.
First we consider the error _t_ , assuming that _A--0 and _-0.

From numerical computations we find that Ifl¢- IfI+0.15(_L/3.6) and

_tc--J_Ei+_.6xl0 -(" (_/_.6)] where _ is in minutes of arc. These

expressions are true for 74.3° z. _ _ z-= = 74.5 °, Irl= 3.58, and .001 =

_ .007. We should expect l_c and J_c to be relatively independent

of the precise value of I_ within the range indicated because over

this particular and small range of angles the trigonometric functions

of L" are practical ly constant.

Second we consider the error SA • assuming that _=0 and

_q) = 0. For a transparent medium, i.e., _ = 0, _= _ for L<LI$

and A = 0 for I_>LB , hence, any deviation from A =TI" or A=0

occurs solely because _>0 . The exact value of A depends, of course,

upon 13 , _ , and J_ and, as we saw earlier, _ is a sensitive function

of _ when I_ is close to _C_ -IC_ . Fig. E-I shows how _c depends

upon _/k . Curves I correspond to LI = 74.3° while curves 2 correspond

to LZ = 74-4°. The Brewster angle is /_B = 74.39338o, hence t_a is

closer to /_B than £I and, from the figure, it is apparent that a given

_ produces a greater error in _c when the measurement is taken at t_I

than when the measurement is taken at Lz . The error $_ is almost

wholly absorbed by _c ; the calculations reveal that, for both angles

of incidence and both values of _ , Irlc differs from Itl in the sixth

significant figure. The reason for this is that _c is not (percentage-

wise) much different from _ , thus, only a minute change in Iq¢ from

lq is required in (25) to yield the true value of _ . From a purely

mathematical standpoint, we see from (26) that, when _ is very small

and when l Z l<< , the effect of_ A on _¢ is negligible.

Third we consider the error _ , assuming _/_ = 0 and SA = 0,

using the same values for _ , 19 , and _ that were used in the previous

paragraph• Fig, 3-3 shows that _ is very small, e.g., curve 3 gives

a value of _-- II', hence, an error of _l/_= 9' results in a situation

where the experimental error _ is nearly as large as the true value

of _/ . For curve 5 in Fig. 3-3, _I/J= 9' is larger than _ . This

is a direct consequence of choosing /_ near the Brewster angle, a
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Fig. E-I Variation of _c with _/% for the two media geometry,

assuming _;/_:$_:0 . The scale for _ is in minutes

of arc. Curves I correspond to an angle of incidence

LI = 74.3°, and curves 2 correspond to an angle of inci-
dence Lz = 74.4°, while the Brewster angle is _s = 74.39338 °•

A perfect measurement of _ , i.e., SA = O, yields _{=_.

The dots (-) indicate the calculated points.
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choice we were forced to make in order to make _ and V# sensitive to

variations in _ . Since_anI_+_)is still a very small quantity, even

when _ = 9' _c cannot wander too far from n therefore the error

S_ has to manifest itself predominantly as an error in _c - By

examining equation (26) we see that the error in _c is approximately

proportional to _ and further, when _t_<O , we will have

_¢< O! The complex number nc+_ c will travel along a path in ( _:,

jl_c) space as _ is varied, as shown in Fig. E-2. The main point

established by Fig. E-2 is that the error in _c is probably not tol-

erable for physically realizeable values of S_ . By moving L away

from the Brewster angle thus increasing _ , the ratio [_/_ can

be reduced, which correspondingly will reduce the error in _c •

Moving _ away from the Brewster angle, however, reduces the sensitivity

of _ to_ and the error in _c due to $_ becomes larger as shown in

Fig. E-I. Also, as _ moves away from LB , either of the quantities

_T- _ or A_ can become small, for example, for _ = 74.0 °, _ : 3.58,

and _ : .001 we have _T- _ = 0.61 °, hence, _ does not have to be

far removed from LB to make _A comparable to TF- _ or _ .

From the above discussions it is clear that a two media investi-

gation of a weakly absorbing substance poses some conflicting alter-

natives. Operation very close to the Brewster angle causes _ and

to become sensitive to _ , and _ is sufficiently far removed from 77"

or 0 so that _A is very small compared to _ , however, _ is

so small that _ can easily become comparable to _ . Moving away

from the Brewster angle increases _ , reducing the effect of #_ ,

however, Z_ and _ become less sensitive to_ and, in addition,

can approach TF or 0 , causing _ to become comparable to IT-_

or _ . The enduring question, which we have not really answered, is,

what is the optimum value of L in order to minimize the errors in _¢

and _c due to _ and _ (and combinations thereof)? The answer to

this question would probably emerge from an analytical error analysis,

however, the preceding discussion, including the numerical examples,

lends credence to the thought that, even if an optimum value of L is

found, the remaining errors in _c and, particularly,_,would still be

too large to make the two media approach attractive•
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Fig. E-2 A plot of the complex quantity nc+_cin ( nc , _ )

space with _ as the changing parameter, assuming $i = $_'0.

Curves I are for L" = 74.3°and curves 2 are for _ = 74.4°,

while the arrows indicate the direction of increasing $_ .

Points were calculated for _# = +9', +6', +3', 0 add

are indicated by dots (.). When _-O--we h-ave_c--_ and

,%_-_I for the two media geometry under consideration. Note
that two values of _ were assumed (_ = 0.001,_ = 0.004).
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E.2. THREE MEDIA PROBLEM (ISOTROPIC GaAs)

In a numerical example to illustrate the use of (32) we shall

suppose (arbitrarily) that measurements have been taken at El = 54°

and L2 = 560 • In addition to the mentioned true values for _l and LZ

we shall assume that the true values _i • _z • _l , and _ exist

for the true values _ = 3.58, N = 0.2, K = 30, _ = 50J_ = 0.84/_

with the two true values _ = .001 and _ = .004. The maximum

errors for the measured quantities shall be assumed to be _i_ =I_Lz_

= 0.06°,15&,i=i SAz_ = 0.450, !_,_=i_ = 0.15 O, _N =.06,

and _ = 9.0. The errors in N and _ can thus be as high as 30%.

For convenience we set _ = O.

The behavior of _ and 1_ with variations in _ is shown in

Figs. E-3 and E-4. Note that _ and _ become less sensitive to

changes in _ when_ becomes large. For the largest values of_i_ shown,

approaches 7T , implying that the three media geometry is beginning

to look like a two media geometry to the incident wave. From inspection

of the figures we should expect the percentage errors in _c due to _

and _9 to be larger for _ = .004 than for _ = .001, As in the two

media case, we shall consider only one error at a time assuming that

the remaining measurements are free of error.
e

The calculated quantities _c +_c and _c are shown in Figs.

E-5 and E-6. The errors due to _N and _ are not large enough to

be significant on the scales of the figures. This is because the silver

substrate with _3 = 0.2 - _ 30 is nearly a perfect reflector and even

with 30% errors in N and I< the substrate is still a nearly perfect

reflector, hence, we can conclude that, for a high reflectivity sub-

strate, the determination of the optical properties of the substrate

need not be precise. The remaining measurement errors contribute to

errors in nc , _c , and _¢ in ways which cannot easily be explained

because of the complicated nature of the inversion formulae (32a, b,c).

The most significant observation that can be made is that the three

media approach appears to be more suitable than the two media approach

if one is mainly interested in obtaining a good estimate of _ only.
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Fig. E-3 Plot of theoretical values of _ (degrees) versus I000_
the three media problem. The numbering of the curves

corresponds to the angle of incidence as follows. (I) _ = 54.0 °,

(2) _ = 54.5 °, (3) i = 55.0°, (4) L = 55.5 °, and (5)

= 56.0 °. The remaining parameters have the same values

as for Fig. 3-4.
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2

3.53 358no 3.63
Fig. E-5 Graphs of calculated quantities _c and _c*_"l_c for the

three media geometry with individual errors as the changing parameters.

Each curve is drawn through seven calculated points indicated by dots (-),

with the arrow indicating the direction of positive increase for the p6r-

ticular error. The numbering of the curves specifies which error is chang-

ing as well as its maximum value as follows. (1)$LI = 0.06o; (2) _z =

0.060; (3) _ = 0.450; (4) S_z = 0.450; (5) $_ = 0.15°; (6) _z = O. 15°-

Thus curve I in the ( mc _¢ ) plane is drawn through points Rc+_¢ o
which correspond to 51_ = -0.06 °, -0.04 °, -0.02 °, 0°, +0.02°,+0-04_ +0.06 .

The true values are _ = 50_ , R = 3.58, and _= 0.001.
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Fig. E-6 This figure .presents the same type of data as does Fig. E-5

except that _ = 0.004.
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This would be the case, for example, if we happenedto be interested
in how_ is affected by variations in types and concentrations of
doping materials for the GaAscase we have examined._

E.3. DISCUSSION AND CONCLUSIONS

We have examinedtwo and three media techniques for studying the

optical properties of an isotropic, homogeneous, weakly absorbing

substance. If one could use perfectly collimated light and obtain

perfect measurements, the two media approach would be preferred

because _c _ _c is then precisely equal to N_ while, for the

three media case, n c÷_¢ , even for perfect measurements does not

converge precisely to n+_ because of the approximations used

to derive the inversion formulae (32a, b,c). However, when one

investigates the effects of realistic measurement errors, the three

media approach is more attractive because no single measurement error

is drastically amplified in the inversion equations.

For the three media case, as in the two media case, we have not

presented an optimum method for selecting Ll and Lz . We have

shown, however, that an ellipsometric technique using a three media

geometry can be used to gain estimates of the optical properties of a

weakly absorbing substance with the individual measurement errors

contributing typically less Than 10% error n n c , _c , and _c •
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The Use of Retardation Plates in Ellipsometry

In this appendix I obtain a new formula, for the use of _/4 or

near 4/4 plates, with particular emphasis on its application in

ellipsometric measurements. Consider the geometry of Fig. F-I. An

electromagnetic wave is assumed to be traveling in the +_ direction,

out of the paper. The % and _ axes are reference axes. A retardation

plate intercepts the wave such that the fast axis of the plate makes

s
E

/
A

/
/

E

/

Fig. F-I. Geometry under consideration.

an angle C with the positive _(, axis. All physically distinct posi-

tions of the fast axis can be achieved by limiting C to the range

O_ C &31" . In this appendix we shall define a positive fast axis

and a positive slow axis as indicated by the _ and S directions

of Fig. F-I.
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In using the retardation plate to measure the polarization state

of the incident wave, the fast axis is rotated about the __ axis until

the waveemerging from the plate is linearly polarized. Supposethat

the resultant linearly polarized electric field vector makesan angle e
with respect to the positive fast axis. All physically distinct

linear vibrations can be obtained if --_/2 <e_/2. The emerging

electric field can be extinguished by an analyzer if the transmission

axis of the analyzer is perpendicular to the emerging electric field

vector. The extinction position of the transmission axis is denoted
by the angle _ in Fig. F-I. Again, -_/2<_/2. Note that the

analyzer transmission axis is located with respect to the positive

fast axis of the compensator.

The incident electric field can be decomposed into the components

where it is assumed that an air environment surrounds the retardation

plate and the analyzer. The polarization state of the incident wave is

defined by the complex number ? , where

in (2F), the angles are restricted to the ranges 0 _ _ L_ I]-/2 and

O_ _ < 2_ . It is important to note that the polarization state

of the incident wavehas been defined with respect to the _ reference

axes. Equations of the form (2F) frequently arise in ellipsometry and

it would be very convenient if the complex number p could be measured

directly. In using a compensator-analyzer combination, the measured

quantities are the angles C and _ , hence, the next best thing would

be to find an explicit relation for p as a function of C and _ .

The explicit solution for _ will be given in this appendix.

If the positive fast axis of the compensator is at an angle C ,

then a coordinate transformation yields
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= ( t O/( + >
(3F)

where E_s (_-_) is the complex amplitude of the incident electric

field component along the positive slow (fast) axis. Analogously to

(2F), the polarization state of the .incident wave, with respect to the

_S reference frame, is specified by

(4F)

z__$ z.,_-rr.where 0 _ _ =/-IT12 and 0 _-

The output wave emerging from the compensator has _- and S

electric field components characterized by

(5F)

As shown in App. B, the geometrical optics approximation leads to

T = I ; -A c = (_-n-d l,>,')(n_- n_) ,
(6F)

where d is the plate thickness. Since ll_$>lq_ , by definition, the

quantity A C is a positive number. Note that /_c and T are fixed

quantities and are therefore independent of the rotational setting of

the fast axis of the compensator plate. If the plate is absorbing

and can be characterized by complex refractive indices of the form

n$-_sand lfl_-_ , then the exact or electromagnetic solution

for /Xc and -[ is given by

Since the purpose of the compensator is to produce a linearly polarized

output wave, then at some position C we must have
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-_C -t'W_'ll" ) ,,v_. = O) _ ) _ )... (7F)

By substituting (4F) and (2F)into (3F) we find that

(8F)

Eqtn. (8F) has been obtained by Hall 35 in his paper on inexact quarter-

wave plates. By writing (7F) as _'_ _ = _c , then the solu-

tions for C which specify the fast axis positions for compensation

are found from (8F) to be given by i_C =

• " (IOF)

When C is between 0 and -rF , (IOF) indicates that a linearly polarized

output wave can be obtained for two distinct positions of the positive

fast axis. If the quantity within the square root brackets in (IOF)

is not positive, then a linearly polarized output wave cannot be achieved.

the compensator is an exact quarter-wave plate, i.e., _c-'I_-/ZWhen

then the two solutions for C differ by 90°.

The vibration direction of the resultant linearly polarized electric

field is specified by the angle e where

(IIF)

if the linear vibration is extinguished by an analyzer, then the posi-

tion of the transmission axis is specified by the angle CZ, where

Note that, when e is positive, _ is negative and vice-versa.
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Supposenow that the compensation-extinction operations are carried
out at the two possible compensator settings. The four measuredangles

are denoted by Cj , GI.i , C_ , and _. The relation between the

measurements and the unknown _ is

- t a.., _ T e x p (- . ( - c ,') i ( , + "l'o,,,,,,c ,') ""
(13F)

The factor T 8X?(-_c)is common to both numerator and denominator

in (13F) and can be cancel led. Note that the numerator (denominator)

of the left side of (13F) is equal to the numerator (denominator) of the

right side. The solution of (13F) for # is

(14F)-

i have not yet determined whether the + or - sign in (14F) is appro-

priate. The correct sign culd be determined by further analysis; how-

ever, since most ellipsometry data eventually winds up on a computer

program, the correct sign in (14F) would probably most easily be deter-

mined by working out some numerical examples on the computer.

Eqtn. (14F) represents the significant advance of this appendix.

Many advantages accure from having an explicit solution for # as a

function of measured quantities. The phase difference _ can be

assigned to the correct quadrant, thus enabling one to determine with-

out doubt whether the elliptic polarization is left-handed or right-

handed. In Chapt. 3 we found that expressions of the form (2F) could

be used to specify the polarization state of the wave reflected from a

specimen. By orienting the 9_ axis in Fig. F-I perpendicular to the
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plane of incidence in an ellipsometry geometry, thequantity _r char-
acterizing the reflected wave could be directly computedby (14F). The

usual procedure in ellipsometry work is to cBlculate first the direction

of the major axis and the ellipticity of the elliptic vibration and
then calculate A and I_ . The equations used in the conventional

procedure offer no rules for specifying whether the elliptic vibration

is left or right-handed, 35 and, further, the numerical values for -_-

and /kc must be known (See App. B).

Another advantage of (14F) is that nothing need be known about the

specific characteristics of the retardation plate other than the dir-

ection of the fast axis. Whether the plate is exactly quarter-wave or

whether multiple internal reflections are present become immaterial

considerations when (14F) is used. If one is interested in calibrating

the compensator, this can be done by inserting a calculated value of jo

into .-

- = ),__ - -. -- - - -- (iSF)

to obtain the calibration factorTeXp_<_. Thus a calibration

apparatus would consist of the compensator to be calibrated, an analyzer

(polarizing device such as a Glan-Thompson prism), a detector, and a

source of elliptically polarized, well collimated, monochromatic light

of the desired wavelength. Several alternative calibration techniques,

some of which are rather elaborate, are discussed by Jerrard 36.

The measurement procedure can be summarized as follows. The

reference axes corresponding to the positive _/_ and _ directions in

Fig. F-I are chosen. The fast axis of the compensator is aligned

parallel to the _ axis. In this position, the positiveS- direction

is specified as the positive _ direction. The compensator and the an-

alyzer are independently rotated until extinction occurs. When looking

into the incident beam, the compensator angle C is positive when the

positive fast axis is rotated counter-clockwise from the positive

axis. Also, the analyzer angle a, is positive when the transmission

axis position is obtained by aTcounterclockwise rotation of the trans-
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mission axis from the positive fast axis. In Fig. F-J, C is positive

and _ is negative. The angular measurements are recorded for the two

possible compensation positions of the fast axis and the measurements

are then substituted into (14F) to obtain the value of p appropriate

to the _ reference frame. For the sake of consistency and to

avoid any possible ambiguities, it is probably wise to use the re-

strictions Ok C<_T and --TF/_ _ _ + ]T/_ .
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This appendix is a relatively self contained work and has been

published in the Journal of the Optical Society of America, vol. 55,

p. 577 (1965). The differences between this appendix and the published

article are only minor. Permission to reproduce the published work

has been granted by the Journal of the Optical Society of America.

The figures and figure captions relevant to this appendix can be

found in numerical sequence at the end of the appendix.
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Polarization State of Thin Film Reflection*

D. A. HOLMES AND D. L. FEUCHT

Department of Electrical Engineering

Carnegie Institute of Technology

Pittsburgh, Pennsylvania 15213

I
Hacskaylo has described a rapid and accurate technique for

determining the refractive index of a transparent film deposited on a

transparent substrate. In his paper, Hacskaylo references Vasicek 2 in

stating that, "The elliptically polarized light can be approximated as

linearly polarized light by noting that the reflected light from a plane

parallel homogeneous film is slightly elliptically polarized and the

reflected light vector describes a narrow ellipse." While this state-

ment is clearly not quantitative, it is, nontheless, quite general since

Hacskaylo has not stated any conditions or restrictions. Because the

polarization state of a monochromatic plane wave after reflection from

a plane parallel film depends on many factors, including the polari-

zation state of the incident wave, the refractive indices of film and

substrate, the film thickness, the angle of incidence, and the wave-

length, it is instructive to consider further the validity of approxi-

mating the elliptically polarized reflected light as linearly polarized

light.

The electric field vector of the reflected wave can be decomposed

into_ and $ components 3. These components can be characterized by

a quantity _r • defined as the phase difference between the _ and 5

This work was supported by the National Aeronautics and Space Admin-

istration under Carnegie Institute of Technology Contract NAS8-5269.

IMichael Hacskaylo, J. Opt. Soc. Am. 54, 198 (1964).

2A. Vasicek, Optics of Thin Films, (North-Holland Publishing Co.,

Amsterdam, The Netherlands, 1960), p. 86.

3Except when specified otherwise, our geometry and notation are the

same as those of Hacskaylo.
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components, and a quantity __F , defined as the ratio of the

magnitude of the _ componentto the magnitude of the S component.

The ellipticity e , defined as the ratio of the minor axis to the
major axis of the reflected elliptic vibration, is given by4

The electric field vector of the incident wave can also be character-

ized by a phase difference _[ and an amplitude ratio _'_

and, when this is done, we find that 5

_ap

=

JA (2b)

where the quantity _-_ •e is nothing more than the polar form ,

of Rp/_ s. Now by using (2a) and (2b) in (I) we have

I+ L (3)

In order to simplify the interpretation of (3), let us assume

that the incident wave is linearly polarized with _i = 0 . In this

case, the angle _ can be thought of as the azimuth (with respect to

the S axis) of the transmission axis of an input polarizer. The

ellipticity e can be made small, perhaps negligible, by adjusting _-

so that the product _?_x_4_ i is either very large or very small,

the limiting case of e=o being reached when either _ = 0° or _" = 90°.

When _ is near_v_TF ,fret= O, _I, _2,..., we see, from (3), that e

4M. Born and E. Wolf, Principles of Optics, (Pergamon Press, London,

England, 1959), pp. 26-27. The _ and _ axes defined in this refer-

ence coincide, respectively, with the S and _ axes for the reflected
wave. In (I), the argument of the tangent function must be chosen
between -45 ° and +45 ° in order that -| _ e_ +i •

5A more detailed development of equations similar to (2a) and (2b) is con-

tained in D.A. Holmes, J. Opt. Soc. Am. 54, 1340(1964). Equations (2a)

and (2b) relate the polarization state of the reflected wave to the polar-
ization state of the incident wave and, through the quantities _ and_'_

show how the polarization state of the reflected wave is influenced by the
thin film reflection. Note thatA and Yare independent of _[ and _ .
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will be near zero, regardless of the value of __ , however,

when _ is near (_÷l_r/__ , le_ can approach unity by adjusting

_ so that_-_-_i _--I . A circularly polarized reflected wave

can be achieved if /k is an odd integral multiple of _ and if the

incident wave is polarized such that __ = I .

Some other features of dielectric film reflection can best be

illustrated by a numerical example. Let us consider a case discussed

by Hacskaylo, namely, reflection from a CaF 2 film ( lq, = 1.2174)

deposited on a microscope sl ida ( I£14= 1.5108). For some selected

film thicknesses, Fig. G-la shows thetheoretical variation of A with

the angle of incidence _o • while Fig. G-Ib shows thetheoretical

variation of _ with _ . In the numerical calculations 6, we

set Rp/R$= l_+_ran d then, by calculating _ and _ , were able to

assign /k to the correct quadrant. Note that, for the sake of showing

as a continuous function of _o , we have not restricted A

z_ A I. ZTT For all of the film thicknesses, cir-to the range O- = .

cularly polarized light can be achieved; however, for the very thin

fi Im (curve I), __- is required to be about 20 or _° _ 87° .

An important feature shown by the figures is that the value of _o ,

for which circularly polarized reflected light is possible, can vary

over tens of degrees, depending on the value of film thickness.

From the above discussion, we conclude that an el liptically

polarized wave, obtained by reflecting a linearly polarized wave from

a lossless film on a lossless substrata, cannot always be approximated

as linearly polarized.

We wish to thank Professor R. L. Longini, Carnegie Institute of

Technology, for several helpful suggestions.

6We have used the sign convention for the Fresnel formulae used in

ref. 4, p. 39.
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Fig. G-I Parameters which describe the polarization state of reflections

from a CaF 2 film deposited on a microscope slide, assuming

refractive index values reported by Hacskaylo. (a) Theo-

retical values of Zk (degrees) vs. angle of incidence _o

(degrees). (b) Theoretical values of __ vs. _(degrees).

The curve numbers specify the film thickness _ as follows;

(I) _ : %/20, (2) _ : 4/5, (3) _ : 4/4, and (4) d : 34/10,

where _ is the vacuum wavelength. The curves were plotted

from computer calculations of /k and _I _ , using

,#o : o°, 2°, 47, ..., 90°.
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